Skip to main content
Log in

Hydrothermal synthesis, characterization and luminescent properties of lanthanide-doped NaLaF4 nanoparticles

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Nanoparticles of sodium lanthanum (III) fluoride-doped and co-doped with Eu3+/Tb3+ were prepared by the hydrothermal method using citric acid as structure-directing agent. Structural aspects and optical properties of synthesized nanoparticles were studied by powder X-ray diffraction (XRPD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy-dispersive X-ray spectra (EDS), particle size by dynamic light scattering (DLS), Fourier transform infrared (FTIR) spectrum and photoluminescence (PL) techniques. Nanoparticles consist of well-crystallized hexagonal phase and the average crystallite size for undoped and doped-NaLaF4 nanoparticles are in the range of 20–22 nm. TEM images show that nanoparticles have cylindrical shape and crystalline nature of nanoparticles was confirmed by SAED patterns. Down- conversion (DC) luminescent properties of doped NaLaF4 were also investigated and impact of co-doping has been explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Huang X, Han S, Huang W and Liu X 2013 Chem. Soc. Rev. 42 173

    Article  Google Scholar 

  2. Bunzli J C G, Comby S, Chauvin A S and Vandevyver C D B 2007 J. Rare Earths 25 257

    Article  Google Scholar 

  3. Mahalingam V, Mangiarini F, Vetrone F, Venkatramu V, Bettinelli M, Speghini A et al 2008, J. Phys. Chem. 112 17745

    Google Scholar 

  4. Kumar G A, Chen C W, Ballato J and Riman R E 2007 J. Mater. Chem. 19 1523

    Article  Google Scholar 

  5. Liu H, Wang H, Zang X and Chen D 2009 J. Mater. Chem. 19 489

    Article  Google Scholar 

  6. Evanics F, Diamente P R, van Veggel F C, Stanisz G J and Prosser R S 2006 J. Mater. Chem. 8 2499

    Article  Google Scholar 

  7. Kumar R, Nyk M, Ohulchanskyy T Y, Flask C A and Prasad P N 2009 Adv. Funct. Mater. 19 853

    Article  Google Scholar 

  8. Auzel F 2004 Chem. Rev. 104 139

    Article  Google Scholar 

  9. Downing E, Hesselink L, Ralston J and Macfarlane R 1996 Science 273 1185

    Article  Google Scholar 

  10. Jacinto C, Vermelho M, Gouveia E, de Araujo M, Udo P, Astrath N et al 2007, Appl. Phys. Lett. 91 071102

    Article  Google Scholar 

  11. van der Ende B M, Aarts L and Meijerink A 2009 Phys. Chem. Chem. Phys. 11 11081

    Article  Google Scholar 

  12. Nyk M, Kumar R, Ohulchanskyy T Y, Bergy E J and Prasad P N 2008 Nano Lett. 8 3834

    Article  Google Scholar 

  13. Qin X, Yokomori T and Ju Y G 2007 Appl. Phys. Lett. 90 073104

    Article  Google Scholar 

  14. Shan J S and Ju Y G 2007 Appl. Phys. Lett. 91 123103

    Article  Google Scholar 

  15. Kramer K W, Biner D, Frei G, Gudel H U, Hehlen M P and Luthi S R 2004 Chem. Mater. 16 1244

    Article  Google Scholar 

  16. Li C, Yang J, Yang P, Lian H and Lin J 2008 Chem. Mater. 20 4317

    Article  Google Scholar 

  17. Xia Z G and Du P 2010 J. Mater. Res. 25 2035

    Article  Google Scholar 

  18. Zeng S J, Ren G Z, Xu C F and Yang Q B 2011 Cryst. Eng. Comm. 13 4276

    Article  Google Scholar 

  19. Ghosh P and Patra A 2008 J. Phys. Chem. 112 19283

    Google Scholar 

  20. Ghosh P and Patra A 2008 J. Phys. Chem. 112 3223

    Google Scholar 

  21. Ghosh P, Kar A and Patra A K 2010 J. Phys. Chem. C 114 715

    Article  Google Scholar 

  22. Chen G Y, Ohulchanskyy T Y, Kachynski A, Agren H and Prasad P N 2011 AC Nano 5 4981

    Article  Google Scholar 

  23. Teng X, Zhu Y, Wei W, Wang S, Huang J, Naccache R et al 2012, J. Am. Chem. Soc. 134 8340

    Article  Google Scholar 

  24. Shang M, Li G, Kang X, Yang D, Geng D, Peng C et al 2012, Dalton Trans. 41 5571

    Article  Google Scholar 

  25. Shang M M, Geng D L, Kang X J, Yang D M, Zhang Y and Lin J 2012 Inorg. Chem. 51 11106

    Article  Google Scholar 

  26. He M, Huang P, Zhang C L, Hu H Y, Bao C C, Gao G et al 2011, Adv. Funct. Mater. 21 4470

    Article  Google Scholar 

  27. Zhou J, Zhu X J, Chen M, Sun Y and Li F Y 2012 Biomaterials 33 6201

    Article  Google Scholar 

  28. Li F, Li C, Liu X, Chen Y, Bai T, Wang L et al 2012, Chem. Eur. J. 18 11641

    Article  Google Scholar 

  29. Dawer A L, Shishodia P K, Chouhan J, Kumar G and Mathur A 1990 Mater. Sci. Lett. 9 547

    Article  Google Scholar 

  30. Tian Z R, Voigt J A, Liu J, Mckenzie B, Mcdermott M J, Rodriguez M A et al 2003, Nat. Mater. 2 821

    Article  Google Scholar 

  31. Sun Y J, Chen Y, Tian L J, Yu Y, Kong X G, Zhao J W et al 2007, Nanotechnology 18 275609

    Article  Google Scholar 

  32. Whitesides G M and Grzybowski B 2002 Science 295 2418

    Article  Google Scholar 

  33. Wang Z L, Hao J H and Chan H L W 2010 Cryst. Eng. Comm. 12 1373

    Article  Google Scholar 

  34. Zhao J W, Sun Y J, Kong X G, Tian L J, Wang Y, Tu L P et al 2008, J. Phys. Chem. 112 15666

    Article  Google Scholar 

  35. Wang F, Han Y, Lim C, Lu Y, Wang J, Xu J et al 2010, Nature 463 1061

    Article  Google Scholar 

  36. Eliseevaa S V and Bunzli J C G 2010 Chem. Soc. Rev. 39 189

    Article  Google Scholar 

  37. Bunzli J C G and Piguet C 2005 Chem. Soc. Rev. 34 1048

    Article  Google Scholar 

  38. Guangshun Y, Lee W B and Chow G M 2007 J. Nanosci. Nanotechnol. 7 2790

    Article  Google Scholar 

  39. Binnemans K 2009 Chem. Soc. Rev. 109 4283

    Article  Google Scholar 

  40. Gaft M H, Reisfeld R and Panczer G 2005 Luminescence spectroscopy of minerals and materials, 2nd edn (Berlin, Heidelberg: Springer)

    Google Scholar 

  41. Kirby A F, Foster D and Richardson F S 1983 Chem. Phys. Lett. 95 507

    Article  Google Scholar 

  42. Kirby A F and Richardson F S 1983 J. Phys. Chem. 87 2544

    Article  Google Scholar 

  43. Ghosh P and Patra A 2008 J. Phys. Chem. C 112 19283; 112 3223

Download references

Acknowledgements

We would like to acknowledge Indian Institute of Technology Roorkee and Indian Institute of Technology Guwahati for their technical support. We also thank School of Physics, Shri Mata Vaishno Devi University (SMVDU) for photoluminescence studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HAQ NAWAZ SHEIKH.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LADOL, J., KHAJURIA, H., KHAJURIA, S. et al. Hydrothermal synthesis, characterization and luminescent properties of lanthanide-doped NaLaF4 nanoparticles. Bull Mater Sci 39, 943–952 (2016). https://doi.org/10.1007/s12034-016-1225-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-016-1225-8

Keywords

Navigation