Skip to main content
Log in

Mechanical, microstructure and electrical properties of ternary ZnO–V2O5–Mn3O4 varistor with sintering temperature

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The mechanical, microstructure and electrical properties of the ZnO–V2O5–Mn3O4 (ZVM)-based varistors were investigated at different sintering temperatures of 825–950C. The microstructure of the samples consists mainly of ZnO grains with Zn3(VO4)2, ZnV2O4 and VO2 as minor secondary phases. These minor phases disappeared for samples sintered at 950C. Energy-dispersive X-ray spectroscopic (EDS) analysis confirmed the above microstructure results. The sintered density is decreased linearly from 5.45 to 5.30 g cm −3 with an increase in the sintering temperature. The E B- and α-values of ZnO-based varistor can be controlled in a straightforward manner through the control of grain size. The breakdown field exhibited the highest value (2110 V cm −1) at 825C in the sintering temperature and the lowest value (1427 V cm −1) at 950C in the sintering temperature. The non-linear coefficient exhibited the highest value, reaching 19.81 at 875C and the lowest value, reaching 6.71 at 850C. As the average grain size increases both the longitudinal wave velocity and the longitudinal elastic modulus decrease while the ultrasonic attenuation increases and vice versa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Philipp H R and Levinson L M 1976 J. Appl. Phys. 46 1332

    Google Scholar 

  2. Levinson L M and Philipp H R 1986 Am. Ceram. Soc. Bull. 65 639

    Google Scholar 

  3. Gupta T K 1990 J. Am. Ceram. Soc. 73 1817

    Article  Google Scholar 

  4. Matsuoka M 1971 Jpn. Appl. Phys. 10 736

    Article  Google Scholar 

  5. Allers A B and Burdvick V L 1991 J. Appl. Phys. 40 6883

    Article  Google Scholar 

  6. Lee Y S, Liao K S and Tseng T Y 1996 J. Am. Ceram. Soc. 79 2379

    Article  Google Scholar 

  7. Chun S Y, Shinozaki K and Mizutani N 1999 J. Am. Ceram. Soc. 82 3065

    Article  Google Scholar 

  8. Nahm C W, Park C H and Yoon H S 2000 J. Mater. Sci. Lett. 19 271

    Article  Google Scholar 

  9. Tsai J K and Wu T B 1994 J. Appl. Phys. 76 4817

    Article  Google Scholar 

  10. Tsai J K and Wu T B 1995 Jpn. J. Appl. Phys. Part 1 34 6452

    Article  Google Scholar 

  11. Tsai J K and Wu T B 1996 Mater. Lett. 26 199

    Article  Google Scholar 

  12. Chen C S, Kuo C T, Wu T B and Lin I N 1997 Jpn. J. Appl. Phys. Part 1 36 1169

    Article  Google Scholar 

  13. Kuo C T, Chen C S and Lin I N 1998 J. Am. Ceram. Soc. 81 2942

    Article  Google Scholar 

  14. Kuo C T, Chen C S and Lin I N 1998 J. Am. Ceram. Soc. 81 2949

    Article  Google Scholar 

  15. Hng H H and Knowles K M 1999 J. Eur. Ceram. Soc. 19 721

    Article  Google Scholar 

  16. Hng H H and Knowles K M 2000 J. Am. Ceram. Soc. 83 2455

    Article  Google Scholar 

  17. Hng H H, Knowles K M and Midgley P A 2001 J. Am. Ceram. Soc. 84 435

    Article  Google Scholar 

  18. Hng H H and Chan P L 2002 Mater. Chem. Phys. 75 61

    Article  Google Scholar 

  19. Nahm C W 2011 Mater. Sci. 34 1385

    Google Scholar 

  20. Nahm C W 2012 Ceram. Int. 38 5285

    Google Scholar 

  21. Nahm C W 2013 Mater. Sci. Semicond. Process. 16 1308

    Article  Google Scholar 

  22. Nahm C W 2013 Mater. Sci. Semicond. Process. 16 778

    Article  Google Scholar 

  23. Nahm C W 2013 J. Mater. Sci.: Mater. Electron. 24 27

    Google Scholar 

  24. Nahm C W 2013 J. Mater. Sci.: Mater. Electron. 24 70

    Google Scholar 

  25. Hng H H and Chan P L 2004 Ceram. Int. 30 1647

    Article  Google Scholar 

  26. Liu H H, Kong H, Jiang D M, Shi W Z and Ma X X 2007 J. Rare Earths 25 120

    Article  Google Scholar 

  27. Liu H Y, Kong H, Ma X M and Shi W Z 2007 J. Mater. Sci. 42 2637

    Article  Google Scholar 

  28. Khafagy A H, El-Rabaie S M, Dawoud M T and Attia M T 2014 J. Adv. Ceram. 3 287

  29. Hng H H and Chan P L 2009 Ceram. Int. 35 409

    Article  Google Scholar 

  30. Nahm C W 2007 J. Mater. Sci. 42 8370

    Article  Google Scholar 

  31. Nahm C W 2008 J. Mater. Sci.: Mater. Electron. 19 1023

    Google Scholar 

  32. Nahm C W 2012 J. Mater. Sci.: Mater. Electron. 23 457

    Google Scholar 

  33. Pianaro S A, Bueno P R and Olivi P 1997 J. Mater. Sci. Lett. 16 634

    Article  Google Scholar 

  34. Pianro S A, Bueno P R, Longo E and Varela J A 1998 J. Mater. Sci.: Mater. Electron. 9 159

    Google Scholar 

  35. Li C, Wang J and Su W 2001 Physica B 307 1

    Article  Google Scholar 

  36. Morris William G 1976 J. Vac. Sci. Technol. 13 926

    Article  Google Scholar 

  37. Badr M H, Sharaf El-Deen L M, Khafagy A H and Nassar D U 2011 J. Electroceram. 27 189

    Article  Google Scholar 

  38. Sedky A, Al-Sawalha A and Yassin A M 2008 Egypt. J. Solids 31 205

    Google Scholar 

  39. Nahm C W 2001 Mater. Lett. 47 182

    Article  Google Scholar 

  40. Sedky A and EL-Suheel E 2010 Phys. Res. Int. 2010 1

    Article  Google Scholar 

  41. Senthilkumaar S, Rajendran K, Banerj S, Chini T K and Sengodan V 2008 Mater. Sci. Semicond. Process. 11 6

    Article  Google Scholar 

  42. Brown J J and Hummel F A 1965 Trans. Br. Ceram. Soc. 64 419

    Google Scholar 

  43. Wurst J C and Nelson J A 1972 J. Am. Ceram. Soc. 55 109

    Article  Google Scholar 

  44. Nahm C W 2009 Ceram. Int. 35 541

    Article  Google Scholar 

  45. Malecki I and Ranachowski J 1981 Physical foundation of ultrasonic research trends and its application in Poland (Warsaw, Poland)

  46. Yan M F and Heuer A H 1983 (Columbus, OH: American Ceramic Society) p 80

  47. Takemura T, Kobayashi M, Takada Y and Sato K 1987 J. Am. Ceram. Soc. 70 237

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M T ATTIA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

EL-RABAIE, S., KHAFAGY, A.H., DAWOUD, M.T. et al. Mechanical, microstructure and electrical properties of ternary ZnO–V2O5–Mn3O4 varistor with sintering temperature. Bull Mater Sci 38, 773–781 (2015). https://doi.org/10.1007/s12034-015-0903-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-015-0903-2

Keywords

Navigation