Skip to main content
Log in

Preliminary comparison of different reduction methods of graphene oxide

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The reduction of graphene oxide (GO) is a promising route to bulk produce graphene-based sheets. Different reduction processes result in reduced graphene oxide (RGO) with different properties. In this paper three reduction methods, chemical, thermal and electrochemical reduction, were compared on three aspects including morphology and structure, reduction degree and electrical conductivity by means of scanning electron microscopy (SEM), X-ray diffraction(XRD), the Fourier transform infrared spectroscopy (FT-IR) spectrum, X-ray photoelectron spectroscopy (XPS) and four-point probe conductivity measurement. Understanding the different characteristics of different RGO by preliminary comparison is helpful in tailoring the characteristics of graphene materials for diverse applications and developing a simple, green, and efficient method for the mass production of graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Geim A K and Novoselov K S 2007 Nat. Mater. 6 183

    Article  Google Scholar 

  2. Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D and Miao F 2008 Nano Lett. 8 902

    Article  Google Scholar 

  3. Lee C G, Wei X D, Kysar J W and Hone J 2008 Science 321 385

    Article  Google Scholar 

  4. Orlita M, Faugeras C and Plochocka P 2008 Phys. Rev. Lett. 101 267601

    Article  Google Scholar 

  5. Service R F 2009 Science 324 875

    Article  Google Scholar 

  6. Park S and Ruoff R S 2009 Nat. Nanotechnol. 4 217

    Article  Google Scholar 

  7. Ang W, Jingxia W, Qing L, Xiangmei L, Xingao L, Xiaochen D and Wei H 2011 Mater. Res. Bull. 46 2131

    Article  Google Scholar 

  8. Luo D C, Zhang G X, Liu J F and Sun X M 2011 J. Phys. Chem. C 115 11327

    Article  Google Scholar 

  9. Pei S F and Cheng H M 2012 Carbon 50 3210

    Article  Google Scholar 

  10. Athanasios B, Bourlinos D G, Dimitrios P, Tamas S, Anna S and Imre D 2003 Langmuir 19 6050

    Article  Google Scholar 

  11. Becerril H A, Man J, Liu Z, Stoltenberg R M, Bao Z and Chen Y 2008 ACS Nano 2 463

    Article  Google Scholar 

  12. Shin H J, Kim K K and Benayad A 2009 Adv. Funct. Mater. 19 1987

    Article  Google Scholar 

  13. Virendra S, Daeha J and Lei Z 2011 Science 56 1178

    Google Scholar 

  14. Fernandez-Merino M J, Guardia L, Paredes J I and Villar-Rodil S 2010 J. Phys. Chem. C 114 6426

    Article  Google Scholar 

  15. Stankovich S, Piner R D and Chen X Q 2006a J. Mater. Chem. 16 155

  16. Stankovich S, Dikin D A and Dommett G H B 2006b Nature 442 282

  17. Stankovich S, Dikin D A and Piner R D 2007 Carbon 45 1558

    Article  Google Scholar 

  18. Hernandez Y, Nicolosi V, Lotya M, Blighe F M, Sun Z Y, De S, McGovern I T, Holland B, Byrne M and Gunko Y 2008 Nat. Nanotechnol. 3 563

    Article  Google Scholar 

  19. Guo H L, Wang X F, Qian Q Y and Xia X H 2009 ACS Nano 3 2653

    Article  Google Scholar 

  20. Shun M, Haihui P and Junhong C 2012 RSC Adv. 2 2643

    Article  Google Scholar 

  21. Cristina B, Patricia L, Clara B, Ricardo S, Marcos G, M Dolores G, Francisco R R and Rosa M 2013 Carbon 52 476

    Article  Google Scholar 

  22. Schniepp H C, Li J L, McAllister M J, Sai H, Herrera-Alonso M, Adamson D H, Prud’homme R K, Car R, Saville D A and Aksay I A 2006 J. Phys. Chem. B 110 8535

    Article  Google Scholar 

  23. McAllister M J, Li J L and Adamson D H 2007 Chem. Mater. 19 4396

    Article  Google Scholar 

  24. Li X, Wang H, Robinson J T, Sanchez H, Diankov G and author=Li, J L Dai H 2009 Am. Chem. Soc. 131 15939

  25. Yang D X, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner R D, Stankovich S, Jung I, Field D A, Ventrice C A and Ruoff R S 2009 Carbon 47 145

    Article  Google Scholar 

  26. Acik M, Lee G, Mattevi C and Chhowalla M 2010 Nat. Mater. 9 840

    Article  Google Scholar 

  27. Ramesha G K and Sampath S 2009 J. Phys. Chem. C 113 7985

    Article  Google Scholar 

  28. Zhou M, Wang Y, Zhai Y, Zhai J. Ren W, Wang F and Dong S 2009 Chem. Eur. J. 15 6116

    Article  Google Scholar 

  29. An S J, Zhu Y, Lee S H, Stoller M D, Emilsson T, Park S, Velamakanni A and Ruoff R S 2010 J. Phys. Chem. Lett. 1 1259

    Article  Google Scholar 

  30. Fan X B, Peng W C, Li Y, Li X Y, Wang S L, Zhang G L and Zhang F B 2008 Adv. Mater. 20 4490

    Article  Google Scholar 

  31. Hummers W S and Offeman R E 1958 J. Am. Chem. Soc. 80 1339

    Article  Google Scholar 

  32. Park S, An J and Jeffrey R P 2011 Carbon 49 3019

    Article  Google Scholar 

  33. Cecilia M, Goki E, Stefano A, Steve M, Andre Mkhoyan K, Ozgur C, Daniel M, Gaetano G, Eric G and Chhowalla M 2009 Adv. Funct. Mater. 19 2577

    Article  Google Scholar 

  34. Si Y C and Samulski E T 2008 Nano Lett. 8 1679

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National High Technology Research and Development Program of China (No. 2012AA030303) and Basic Research Key Program of Shanghai (No. 12JC1408600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DONG ZHANG.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SHANG, Y., ZHANG, D., LIU, Y. et al. Preliminary comparison of different reduction methods of graphene oxide. Bull Mater Sci 38, 7–12 (2015). https://doi.org/10.1007/s12034-014-0794-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-014-0794-7

Keywords

Navigation