Skip to main content
Log in

Synthesis and resistive switching behaviour of ZnMnO3 thin films with an Ag/ZnMnO3/ITO unsymmetrical structure

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Single-phase MnZnO3 films were prepared on glass substrates coated with the use of indium tin oxide (ITO) as transparent bottom electrode via the sol–gel method. The effects of annealing temperature on structure, resistance switching behaviour and endurance characteristics of the ZnMnO3 films were investigated. The stable resistive switching behaviour with high resistance ratio in Ag/ZnMnO3/ITO unsymmetrical structure was observed. No second phase is detected, and the crystallinity of the MnZnO3 films is improved with the increase in annealing temperature from 350 to 400C. The MnZnO3 films annealed at 350–450C with an Ag/MnZnO3/ITO structure exhibit bipolar resistive switching behaviour. Ohmic and space-charge-limited conductions are the dominant mechanisms at low and high resistance states, respectively. V ON, VOFF and RHRS/RLRS of the MnZnO3 films increase with the increase in annealing temperature. Improved endurance characteristics are observed in the samples annealed at 350 and 400C. The endurance of the MnZnO3 films degrades when annealed at >450C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Waser R and Aono M 2007, Nat. Mater. 6 833

    Article  Google Scholar 

  2. Meijer G I 2008, Science 319 1625

    Article  Google Scholar 

  3. Ouyang J 2010, Nano Rev. 1 5118

    Article  Google Scholar 

  4. Cheng H C, Chen S W, and Wu J M 2011, Thin Solid Films 519 6155

    Article  Google Scholar 

  5. Tang M H, Jiang B, Xiao Y G, Zeng Z Q, Wang Z P, Li J C, and He J 2012, Microelectron. Eng. 93 35

    Article  Google Scholar 

  6. Wong F J, Sriram T S, Smith B R, and Ramanathan S 2013, Solid-State Electron. 87 21

    Article  Google Scholar 

  7. Dong R, Xiang W F, Lee D S, Oh S J, Seong D J, and Heo S H 2007, Appl. Phys. Lett. 90 182118

    Article  Google Scholar 

  8. Kim S and Choi Y K 2008, Appl. Phys. Lett. 92 223508

    Article  Google Scholar 

  9. Zhang H J, Zhang X P, Shi J P, Tian H F, and Zhao Y G 2009, Appl. Phys. Lett. 94 092111

    Article  Google Scholar 

  10. Kim K M, Choi B J, Shin Y C, Choi S, and Huang C S 2007, Appl. Phys. Lett. 91 012907

    Article  Google Scholar 

  11. Liu Q, Guan W, Long S, Jia R, and Liu M 2008, Appl. Phys. Lett. 92 012117

    Article  Google Scholar 

  12. Son J Y and Shin Y H 2008, Appl. Phys. Lett. 92 222106

    Article  Google Scholar 

  13. Ghenzi N, Sánchez M J, Gomez-Marlasca F, Levy P, and Rozenberg M J 2010, J. Appl. Phys. 107 093719

    Article  Google Scholar 

  14. Han Y, Cho K, and Kim S 2011, Microelectron. Eng. 88 2608

    Article  Google Scholar 

  15. Kukreja L M, Das A K, and Misra P 2009, Bull. Mater. Sci. 32 247

    Article  Google Scholar 

  16. Peng H and Wu T 2009, Appl. Phys. Lett. 95 152106

    Article  Google Scholar 

  17. Yang Y C, Pan F, Liu Q, Liu M, and Zeng F 2009, Nano Lett. 9 1636

    Article  Google Scholar 

  18. Peiteado M, Caballero A C, and Makovec D 2007, J. Eur. Ceram. Soc. 27 3915

    Article  Google Scholar 

  19. Ranjith R, Prellier W, Cheah J W, Wang J L, and Wu T 2008, Appl. Phys. Lett. 92 232905

    Article  Google Scholar 

  20. Szmytkowski J 2007, J. Phys. D: Appl. Phys. 40 3352

    Article  Google Scholar 

  21. Shi L, Shang D, Sun J, and Shen B 2009, Appl. Phys. Express 2 101602

    Article  Google Scholar 

  22. Park J W, Kim D Y, and Lee J K 2005, J. Vac. Sci. Technol. A 23 1309

    Article  Google Scholar 

  23. Xu N, Liu L, Sun X, Liu X, and Han D 2008, Appl. Phys. Lett. 92 232112

    Article  Google Scholar 

  24. Gao S M, Wang H, Xu J W, Yuan C L, and Zhang X W 2012, Solid-State Electron. 76 40

    Article  Google Scholar 

Download references

Acknowledgement

This research was jointly sponsored by Natural Science Foundation of China (Grant no. 61066001) and Guangxi Key Laboratory of Information Materials (Guilin University of Electronic Technology), China (Project no. 1110908-10-Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HUA WANG.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

WANG, H., GAO, SM., XU, JW. et al. Synthesis and resistive switching behaviour of ZnMnO3 thin films with an Ag/ZnMnO3/ITO unsymmetrical structure. Bull Mater Sci 38, 105–109 (2015). https://doi.org/10.1007/s12034-014-0792-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-014-0792-9

Keywords

Navigation