Skip to main content
Log in

Molecular Cloning, Expression and Characterization of Pectin Methylesterase (CtPME) from Clostridium thermocellum

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Many phytopathogenic micro-organisms such as bacteria and fungi produce pectin methylesterases (PME) during plant invasion. Plants and insects also produce PME to degrade plant cell wall. In the present study, a thermostable pectin methylesterase (CtPME) from Clostridium thermocellum belonging to family 8 carbohydrate esterase (CE8) was cloned, expressed and purified. The amino acid sequence of CtPME exhibited similarity with pectin methylesterase from Erwinia chrysanthemi with 38% identity. The gene encoding CtPME was cloned into pET28a(+) vector and expressed using Escherichia coli BL21(DE3) cells. The recombinant CtPME expressed as a soluble protein and exhibited a single band of molecular mass approximately 35.2 kDa on SDS-PAGE gels. The molecular mass, 35.5 kDa of the enzyme, was also confirmed by MALDI-TOF MS analysis. Notably, highest protein concentration (11.4 mg/mL) of CtPME was achieved in auto-induction medium, as compared with LB medium (1.5 mg/mL). CtPME showed maximum activity (18.1 U/mg) against citrus pectin with >85% methyl esterification. The optimum pH and temperature for activity of CtPME were 8.5 and 50 °C, respectively. The enzyme was stable in pH range 8.0–9.0 and thermostable between 45 and 70 °C. CtPME activity was increased by 40% by 5 mM Ca2+ or Mg2+ ions. Protein melting curve of CtPME gave a peak at 80 °C. The peak was shifted to 85 °C in the presence of 5 mM Ca2+ ions, and the addition of 5 mM EDTA shifted back the melting peak to 80 °C. CtPME can be potentially used in food and textile industry applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PME:

Pectin methylesterase

DE:

Degree of esterification

HMP:

High methoxyl pectin

LMP:

Low methoxyl pectin

CP:

Citrus pectin

References

  1. Ridley, B. L., O’Neill, M. A., & Mohnen, D. (2001). Pectins: Structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry, 57, 929–967.

    Article  CAS  Google Scholar 

  2. May, C. D. (1990). Industrial pectins: Sources, production and applications. Carbohydrate Polymers, 12, 79–99.

    Article  CAS  Google Scholar 

  3. Rolin, C. (2002). 8 Commercial pectin preparations. Pectins and Their Manipulation, 15, 222.

    Google Scholar 

  4. Buchholt, H. C., Christensen, T. M. I. E., Fallesen, B., Ralet, M. C., & Thibault, J. F. (2004). Preparation and properties of enzymatically and chemically modified sugar beet pectins. Carbohydrate Polymers, 58, 149–161.

    Article  CAS  Google Scholar 

  5. Voragen, A. G., Coenen, G. J., Verhoef, R. P., & Schols, H. A. (2009). Pectin, a versatile polysaccharide present in plant cell walls. Structural Chemistry, 20, 263–275.

    Article  CAS  Google Scholar 

  6. ONeill, M., Albersheim, P., & Darvill, A. (1990). The pectic polysaccharides of primary cell walls. In D. M. Dey (Ed.), Methods in plant biochemistry (Vol. 2, pp. 415–441). London: Academic Press.

  7. Willats, W. G., Knox, J. P., & Mikkelsen, J. D. (2006). Pectin: New insights into an old polymer are starting to gel. Trends in Food Science & Technology, 17, 97–104.

    Article  CAS  Google Scholar 

  8. DeVries, J. A., Hansen, M., Soderberg, J., Glahn, P. E., & Pedersen, J. K. (1986). Distribution of methoxyl groups in pectins. Carbohydrate Polymers, 6, 165–176.

    Article  CAS  Google Scholar 

  9. Sriamornsak, P. (2003). Chemistry of pectin and its pharmaceutical uses: A review. Silpakorn University International Journal, 3, 206–228.

    Google Scholar 

  10. Fraeye, I., Duvetter, T., Doungla, E., Van Loey, A., & Hendricks, M. (2010). Fine-tuning the properties of pectin–calcium gels by control of pectin fine structure, gel composition and environmental conditions. Trends in Food Science & Technology, 21, 219–228.

    Article  CAS  Google Scholar 

  11. Kashyap, D. R., Vohra, P. K., Chopra, S., & Tewari, R. (2001). Applications of pectinases in the commercial sector: A review. Bioresource Technology, 77, 215–227.

    Article  CAS  Google Scholar 

  12. Jiang, X., Chen, P., Yin, M., & Yang, Q. (2013). Constitutive expression, purification and characterisation of pectin methylesterase from Aspergillus niger in Pichia pastoris for potential application in the fruit juice industry. Journal of the Science of Food and Agriculture, 93, 375–381.

    Article  CAS  Google Scholar 

  13. Pressey, R., & Avants, J. K. (1982). Solubilization of cell walls by tomato polygalacturonases: Effects of pectinesterases. Journal of Food Biochemistry, 6, 57–74.

    Article  CAS  Google Scholar 

  14. Frenkel, C., Peters, J. S., Tieman, D. M., Tiznado, M. E., & Handa, A. K. (1998). Pectin methylesterase regulates methanol and ethanol accumulation in ripening tomato (Lycopersicon esculentum) fruit. Journal of Biological Chemistry, 273, 4293–4295.

    Article  CAS  Google Scholar 

  15. Seymour, G. B., Lasslett, Y., & Tucker, G. A. (1987). Differential effects of pectolytic enzymes on tomato polyuronides in vivo and in vitro. Phytochemistry, 26, 3137–3139.

    Article  CAS  Google Scholar 

  16. Koch, J. L., & Nevins, D. J. (1989). Tomato fruit cell wall I. Use of purified tomato polygalacturonase and pectin methylesterase to identify developmental changes in pectins. Plant Physiology, 91, 816–822.

    Article  CAS  Google Scholar 

  17. Nari, J., Noat, G., & Ricard, J. (1991). Pectin methylesterase, metal ions and plant cell-wall extension. Hydrolysis of pectin by plant cell-wall pectin methylesterase. Biochemical Journal, 279, 343–350.

    Article  CAS  Google Scholar 

  18. Micheli, F. (2001). Pectin methylesterases: Cell wall enzymes with important roles in plant physiology. Trends in Plant Science, 6, 414–419.

    Article  CAS  Google Scholar 

  19. Duvetter, T., Fraeye, I., Sila, D. N., Verlent, I., Smout, C., Hendrickx, M., et al. (2006). Mode of de-esterification of alkaline and acidic pectin methyl esterases at different pH conditions. Journal of Agricultural and Food Chemistry, 54, 7825–7831.

    Article  CAS  Google Scholar 

  20. Limberg, G., Körner, R., Buchholt, H. C., Christensen, T. M., Roepstorff, P., & Mikkelsen, J. D. (2000). Analysis of different de-esterification mechanisms for pectin by enzymatic fingerprinting using endopectin lyase and endopolygalacturonase II from Aspergillus niger. Carbohydrate Research, 327, 293–307.

    Article  CAS  Google Scholar 

  21. Kim, Y., Williams, M. A., Galant, A. L., Luzio, G. A., Savary, B. J., Vasu, P., et al. (2013). Nanostructural modification of a model homogalacturonan with a novel pectin methylesterase: Effects of pH on nanostructure, enzyme mode of action and substrate functionality. Food Hydrocolloids, 33, 132–141.

    Article  CAS  Google Scholar 

  22. Kent, L. M., Loo, T. S., Melton, L. D., Mercadante, D., Williams, M. A., & Jameson, G. B. (2016). Structure and properties of a non-processive, salt-requiring, and acidophilic pectin methylesterase from Aspergillus niger provide insights into the key determinants of processivity control. Journal of Biological Chemistry, 291, 1289–1306.

    Article  CAS  Google Scholar 

  23. Bayer, E. A., Morag, E., & Lamed, R. (1994). The cellulosome- a treasure-trove for biotechnology. Trends in Biotechnology, 12, 379–386.

    Article  CAS  Google Scholar 

  24. Fontes, C. M., & Gilbert, H. J. (2010). Cellulosomes: Highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Annual Review of Biochemistry, 79, 655–681.

    Article  CAS  Google Scholar 

  25. Lamed, R., Setter, E., & Bayer, E. A. (1983). Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum. Journal of Bacteriology, 156, 828–836.

    CAS  Google Scholar 

  26. Lombard, V., Bernard, T., Rancurel, C., Brumer, H., Coutinho, P. M., & Henrissat, B. (2010). A hierarchical classification of polysaccharide lyases for glycogenomics. Biochemical Journal, 432, 437–444.

    Article  CAS  Google Scholar 

  27. Bradford, M. M. (1976). Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  28. Tripathi, N. K., Shrivastva, A., Biswal, K. C., & Rao, P. L. (2009). Methods: Optimization of culture medium for production of recombinant dengue protein in Escherichia coli. Industrial Biotechnology, 5, 179–183.

    Article  CAS  Google Scholar 

  29. Studier, F. W. (2005). Protein production by auto-induction in high-density shaking cultures. Protein Expression and Purification, 41, 207–234.

    Article  CAS  Google Scholar 

  30. Savary, B. J., Vasu, P., Cameron, R. G., McCollum, T. G., & Nuñez, A. (2013). Structural characterization of the thermally tolerant pectin methylesterase purified from Citrus sinensis fruit and its gene sequence. Journal of Agricultural and Food Chemistry, 61, 12711–12719.

    Article  CAS  Google Scholar 

  31. Shevchenko, A., Tomas, H., Havli, J., Olsen, J. V., & Mann, M. (2006). In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nature Protocols, 1, 2856–2860.

    Article  CAS  Google Scholar 

  32. Anthon, G. E., & Barrett, D. M. (2004). Comparison of three colorimetric reagents for the determination of methanol with alcohol oxidase: Application to the assay of pectin methylesterase. Journal of Agricultural and Food Chemistry, 52, 3749–3753.

    Article  CAS  Google Scholar 

  33. Dvortsov, I. A., Lunina, N. A., Chekanovskaya, L. A., Schwarz, W. H., Zverlov, V. V., & Velikodvorskaya, G. A. (2009). Carbohydrate-binding properties of a separately folding protein module from β-1, 3-glucanase Lic16A of Clostridium thermocellum. Microbiology, 155, 2442–2449.

    Article  CAS  Google Scholar 

  34. Vasu, P., Savary, B. J., & Cameron, R. G. (2012). Purification and characterization of a papaya (Carica papaya L.) pectin methylesterase isolated from a commercial papain preparation. Food Chemistry, 133, 366–372.

    Article  CAS  Google Scholar 

  35. Remoroza, C., Wagenknecht, M., Buchholt, H. C., Moerschbacher, B. M., Gruppen, H., & Schols, H. A. (2015). Mode of action of Bacillus licheniformis pectin methylesterase on highly methyl-esterified and acetylated pectins. Carbohydrate Polymers, 115, 540–550.

    Article  CAS  Google Scholar 

  36. Laurent, F., Kotoujansky, A., & Bertheau, Y. (2000). Overproduction in Escherichia coli of the pectin methylesterase A from Erwinia chrysanthemi 3937: One-step purification, biochemical characterization, and production of polyclonal antibodies. Canadian Journal of Microbiology, 46, 474–780.

    Article  CAS  Google Scholar 

  37. Plastow, G. S. (1988). Molecular cloning and nucleotide sequence of the pectin methylesterase gene of Erwinia chrysanthemi B374. Molecular Microbiology, 2, 247–254.

    Article  CAS  Google Scholar 

  38. Heikinheimo, R., Hemilä, H., Pakkanen, R., & Palva, I. (1991). Production of pectin methylesterase from Erwinia chrysanthemi B374 in Bacillus subtilis. Applied Microbiology and Biotechnology, 35, 51–55.

    Article  CAS  Google Scholar 

  39. Zheng, L., Du, Y., & Zhang, J. (2001). Degumming of ramie fibers by alkalophilic bacteria and their polysaccharide-degrading enzymes. Bioresource Technology, 78, 89–94.

    Article  CAS  Google Scholar 

  40. Chiliveri, S. R., Koti, S., & Linga, V. R. (2016). Retting and degumming of natural fibers by pectinolytic enzymes produced from Bacillus tequilensis SV11-UV37 using solid state fermentation. Springer Plus, 5, 1–17.

    Article  Google Scholar 

  41. Vogt, L. M., Sahasrabudhe, N. M., Ramasamy, U., Meyer, D., Pullens, G., Faas, M. M., et al. (2016). The impact of lemon pectin characteristics on TLR activation and T84 intestinal epithelial cell barrier function. Journal of Functional Foods, 22, 398–407.

    Article  CAS  Google Scholar 

  42. Gómez, B., Gullón, B., Yáñez, R., Schols, H., & Alonso, J. L. (2016). Prebiotic potential of pectins and pectic oligosaccharides derived from lemon peel wastes and sugar beet pulp: A comparative evaluation. Journal of Functional Foods, 20, 108–121.

    Article  Google Scholar 

  43. Jenkins, J., Mayans, O., Smith, D., Worboys, K., & Pickersgill, R. W. (2001). Three-dimensional structure of Erwinia chrysanthemi pectin methylesterase reveals a novel esterase active site. Journal of Molecular Biology, 305, 951–960.

    Article  CAS  Google Scholar 

  44. Fries, M., Ihrig, J., Brocklehurst, K., Shevchik, V. E., & Pickersgill, R. W. (2007). Molecular basis of the activity of the phytopathogen pectin methylesterase. The EMBO Journal, 26, 3879–3887.

    Article  CAS  Google Scholar 

  45. Pitkänen, K., Heikinheimo, R., & Pakkanen, R. (1992). Purification and characterization of Erwinia chrysanthemi B374 pectin methylesterase produced by Bacillus subtilis. Enzyme and Microbial Technology, 14, 832–836.

    Article  Google Scholar 

  46. Shevchik, V. E., Condemine, G., Hugouvieux-Cotte-Pattat, N., & Robert-Baudouy, J. (1996). Characterization of pectin methylesterase B, an outer membrane lipoprotein of Erwinia chrysanthemi 3937. Molecular Microbiology, 19, 455–466.

    Article  CAS  Google Scholar 

  47. Chakraborty, S., Fernandes, V. O., Dias, F. M., Prates, J. A., Ferreira, L. M., Fontes, C. M., et al. (2015). Role of pectinolytic enzymes identified in Clostridium thermocellum Cellulosome. PLoS One, 10, e0116787.

    Article  Google Scholar 

  48. Dhillon, A., Fernandes, V. O., Dias, F. M., Prates, J. A., Ferreira, L. M., Fontes, C. M., et al. (2016). A new member of family 11 Polysaccharide Lyase, Rhamnogalacturonan Lyase (CtRGLf) from Clostridium thermocellum. Molecular Biotechnology, 58, 232–240.

    Article  CAS  Google Scholar 

  49. Diaz-Cruz, C. A., Regalado-Gonzalez, C., Morales-Sanchez, E., Velazquez, G., Gonzalez-Jasso, E., & Amaya-Llano, S. L. (2016). Thermal inactivation kinetics of partially purified mango pectin methylesterase. Food Science and Technology, 36, 282–285.

    Google Scholar 

  50. Savary, B. J., Vasu, P., Nunez, A., & Cameron, R. G. (2010). Identification of thermolabile pectin methylesterases from sweet orange fruit by peptide mass fingerprinting. Journal of Agricultural and Food Chemistry, 58, 12462–12468.

    Article  CAS  Google Scholar 

  51. Brühlmann, F., Leupin, M., Erismann, K. H., & Fiechter, A. (2000). Enzymatic degumming of ramie bast fibers. Journal of Biotechnology, 76, 43–50.

    Article  Google Scholar 

  52. Arotupin, D. J., Akinyosoye, F. A., & Onifade, A. K. (2008). Purification and characterization of pectin methylesterase from Aspergillus repens isolated from cultivated soil. African Journal of Biotechnology, 7, 1991–1998.

    Article  CAS  Google Scholar 

  53. Jiang, X., Jia, Q., Chen, L., Chen, Q., & Yang, Q. (2014). Recombinant expression and inhibition mechanism analysis of pectin methylesterase from Aspergillus flavus. FEMS Microbiology Letters, 355, 12–19.

    Article  CAS  Google Scholar 

  54. Wu, H. C., Hsu, S. F., Luo, D. L., Chen, S. J., Huang, W. D., Lur, H. S., et al. (2010). Recovery of heat shock-triggered released apoplastic Ca2+ accompanied by pectin methylesterase activity is required for thermotolerance in soybean seedlings. Journal of Experimental Botany, 61, 2843–2852.

    Article  CAS  Google Scholar 

  55. Sultan, A. M., Amid, A., & Hamzah, M. (2012). Molecular dynamics study of the effect of calcium ions on the thermostability of Bacillus Amyloliquefaciens phytase. Australian Journal of Basic and Applied Sciences, 6, 109–116.

    Google Scholar 

Download references

Acknowledgements

The research was supported by funding from Indian Institute of Technology Guwahati, Guwahati from Ministry of Human Resource Development, India. The authors are grateful to Central instrument facility (CIF), IIT Guwahati, for providing the facility of MALDI-TOF MS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Goyal.

Ethics declarations

Conflict of interest

The authors do not have potential conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajulapati, V., Goyal, A. Molecular Cloning, Expression and Characterization of Pectin Methylesterase (CtPME) from Clostridium thermocellum . Mol Biotechnol 59, 128–140 (2017). https://doi.org/10.1007/s12033-017-9997-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-017-9997-7

Keywords

Navigation