Skip to main content

Advertisement

Log in

A Lentiviral Vector Expressing Desired Gene Only in Transduced Cells: An Approach for Suicide Gene Therapy

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Suicide gene therapy is a therapeutic strategy, in which cell suicide inducing transgenes are introduced into target cells. Inserting a toxin-encoding gene into a lentiviral vector leads to decreased efficiency of virus production due to lethal effect of toxin on packaging cells. In this study, we designed and constructed a transfer vector to express the toxin in transduced cells but not in packaging cells. Plasmid pLenti-F/GFP was constructed by cutting out R 5′LTR-R 3′LTR fragment with the AflII restriction endonuclease from a plasmid pLenti4-GW/H1/TO-laminshRNA, followed by ligating R 5′LTR-R 3′LTR fragment, constructed by three PCR stages. The promoter and GFP CDS were inserted in opposite strand. For lentiviral production, the HEK293T cell line was co-transfected with the PMD2G, psPAX2, and pLenti-F/GFP plasmids (envelope, packaging, and transfer plasmids).Viral vector titers were assayed. The HEK293T cell line was transduced with this virus. PCR was performed to confirm the presence of the promoter fragment between the R and U5 in 3′LTR. The lentivirus titers were approximately 2 × 105. The GFP expression was seen in 51 % of the HEK293T cells transduced with lentivirus. The PCR product size was 1440 bp confirming the promoter fragment position between the R and U5 in 3′LTR. The strategy enables us to use a broad spectrum of toxin genes in gene therapy and helps avoid the death of the packaging cells with lentiviral vectors carrying a toxin-encoding gene, thereby increasing the efficiency of viral production in packaging cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Escors, D., & Breckpot, K. (2010). Lentiviral vectors in gene therapy: their current status and future potential. Archivum Immunologiae et Therapiae Experimentalis, 58, 107–119.

    Article  CAS  Google Scholar 

  2. Yazawa, K., Fisher, W. E., & Brunicardi, F. C. (2002). Current progress in suicide gene therapy for cancer. World Journal of Surgery, 26, 783–789.

    Article  Google Scholar 

  3. Malecki, M. (2012). Frontiers in suicide gene therapy of cancer. Journal of Genetic Syndromes and Gene Therapy, 3, e114.

    Article  Google Scholar 

  4. Salvatorelli, E., Menna, P., Cantalupo, E., Chello, M., Covino, E., Wolf, F. I., & Minotti, G. (2015). The concomitant management of cancer therapy and cardiac therapy. Biochimica et Biophysica Acta. doi:10.1016/j.bbamem.2015.01.003.

    Google Scholar 

  5. Springer, C. J., & Niculescu-Duvaz, I. (2000). Prodrug-activating systems in suicide gene therapy. The Journal of Clinical Investigation, 105, 1161–1167.

    Article  CAS  Google Scholar 

  6. Duarte, S., Carle, G., Faneca, H., de Lima, M. C., & Pierrefite-Carle, V. (2012). Suicide gene therapy in cancer: Where do we stand now? Cancer Letters, 324, 160–170.

    Article  CAS  Google Scholar 

  7. Zarogoulidis, P., Darwiche, K., Sakkas, A., Yarmus, L., Huang, H., Li, Q., et al. (2013). Suicide gene therapy for cancer—current strategies. Journal of Genetic Syndromes & Gene Therapy, 4, 16849.

    Google Scholar 

  8. Yang, W. S., Park, S. O., Yoon, A. R., Yoo, J. Y., Kim, M. K., Yun, C. O., & Kim, C. W. (2006). Suicide cancer gene therapy using pore-forming toxin, streptolysin O. Molecular Cancer Therapeutics, 5, 1610–1619.

    Article  CAS  Google Scholar 

  9. Chen, H. (2012). Exploiting the intron-splicing mechanism of insect cells to produce viral vectors harboring toxic genes for suicide gene therapy. Molecular Therapy—Nucleic Acids, 1, e57.

    Article  Google Scholar 

  10. Massuda, E. S., Dunphy, E. J., Redman, R. A., Schreiber, J. J., Nauta, L. E., Barr, F. G., et al. (1997). Regulated expression of the diphtheria toxin A chain by a tumor-specific chimeric transcription factor results in selective toxicity for alveolar rhabdomyosarcoma cells. Proceedings of the National Academy of Sciences USA, 94, 14701–14706.

    Article  CAS  Google Scholar 

  11. Keyvani, K., Baur, I., & Paulus, W. (1999). Tetracycline-controlled expression but not toxicity of an attenuated diphtheria toxin mutant. Life Sciences, 64, 17124.

    Article  Google Scholar 

  12. Wang, C. Y., Li, F., Yang, Y., Guo, H. Y., Wu, C. X., & Wang, S. (2006). Recombinant baculovirus containing the diphtheria toxin A gene for malignant glioma therapy. Cancer Research, 66, 5798–5806.

    Article  CAS  Google Scholar 

  13. Kurayoshi, K., Ozono, E., Iwanaga, R., Bradford, A. P., Komori, H., & Ohtani, K. (2014). Cancer cell specific cytotoxic gene expression mediated by ARF tumor suppressor promoter constructs. Biochemical and Biophysical Research Communications, 450, 240–246.

    Article  CAS  Google Scholar 

  14. Li, Y., McCadden, J., Ferrer, F., Kruszewski, M., Carducci, M., Simons, J., & Rodriguez, R. (2002). Prostate-specific expression of the diphtheria toxin A chain (DT-A): Studies of inducibility and specificity of expression of prostate-specific antigen promoter-driven DT-A adenoviral-mediated gene transfer. Cancer Research, 62, 2576–2582.

    CAS  Google Scholar 

  15. Kohlschutter, J., Michelfelder, S., & Trepel, M. (2010). Novel cytotoxic vectors based on adeno-associated virus. Toxins (Basel), 2, 2754–2768.

    Article  Google Scholar 

  16. McTaggart, S., & Al-Rubeai, M. (2002). Retroviral vectors for human gene delivery. Biotechnology Advances, 20, 1–31.

    Article  CAS  Google Scholar 

  17. Santhosh, C. V., Tamhane, M. C., Kamat, R. H., Patel, V. V., & Mukhopadhyaya, R. (2008). A lentiviral vector with novel multiple cloning sites: Stable transgene expression in vitro and in vivo. Biochemical and Biophysical Research Communications, 371, 546–550.

    Article  CAS  Google Scholar 

  18. Freed, E. O. (2001). HIV-1 replication. Somatic Cell and Molecular Genetics, 26, 13–33.

    Article  CAS  Google Scholar 

  19. Vecil, G. G., & Lang, F. F. (2003). Clinical trials of adenoviruses in brain tumors: A review of Ad-p53 and oncolytic adenoviruses. Journal of Neuro-oncology, 65, 237–246.

    Article  Google Scholar 

  20. Sudarshan, S., Holman, D. H., Hyer, M. L., Voelkel-Johnson, C., Dong, J. Y., & Norris, J. S. (2005). In vitro efficacy of Fas ligand gene therapy for the treatment of bladder cancer. Cancer Gene Therapy, 12, 12–18.

    Article  CAS  Google Scholar 

  21. Ozawa, T., Hu, J. L., Hu, L. J., Kong, E. L., Bollen, A. W., Lamborn, K. R., & Deen, D. F. (2005). Functionality of hypoxia-induced BAX expression in a human glioblastoma xenograft model. Cancer Gene Therapy, 12, 449–455.

    CAS  Google Scholar 

  22. Chen, H. (2012). Exploiting the intron-splicing mechanism of insect cells to produce viral vectors harboring toxic genes for suicide gene therapy. Molecular Therapy—Nucleic Acids, 1, e57.

    Article  Google Scholar 

  23. Maxwell, I. H., Maxwell, F., & Glode, L. M. (1986). Regulated expression of a diphtheria toxin A-chain gene transfected into human cells: possible strategy for inducing cancer cell suicide. Cancer Research, 46, 4660–4664.

    CAS  Google Scholar 

  24. Goverdhana, S., Puntel, M., Xiong, W., Zirger, J. M., Barcia, C., Curtin, J. F., et al. (2005). Regulatable gene expression systems for gene therapy applications: progress and future challenges. Molecular Therapy, 12, 189–211.

    Article  CAS  Google Scholar 

  25. Wang, Z., Tang, Z., Zheng, Y., Yu, D., Spear, M., Iyer, S. R., et al. (2010). Development of a nonintegrating Rev-dependent lentiviral vector carrying diphtheria toxin A chain and human TRAF6 to target HIV reservoirs. Gene Therapy, 17, 1063–1076.

    Article  CAS  Google Scholar 

  26. Young, J., Tang, Z., Yu, Q., Yu, D., & Wu, Y. (2008). Selective killing of HIV-1-positive macrophages and T cells by the Rev-dependent lentivirus carrying anthrolysin O from Bacillus anthracis. Retrovirology, 5, 36.

    Article  Google Scholar 

  27. Vigna, E., & Naldini, L. (2000). Lentiviral vectors: Excellent tools for experimental gene transfer and promising candidates for gene therapy. The Journal of Gene Medicine, 2, 308–316.

    Article  CAS  Google Scholar 

  28. Pluta, K., & Kacprzak, M. M. (2009). Use of HIV as a gene transfer vector. Acta Biochimica Polonica, 56, 531–595.

    CAS  Google Scholar 

  29. Ghanbari, J. A., Salehi, M., Zadeh, A. K., Zadeh, S. M., Beigi, V. B., Ahmad, H. K., et al. (2014). A preliminary step of a novel strategy in suicide gene therapy with lentiviral vector. Advanced Biomedical Research, 3, 7.

    Article  Google Scholar 

  30. Matrai, J., Chuah, M. K., & VandenDriessche, T. (2010). Recent advances in lentiviral vector development and applications. Molecular Therapy, 18, 477–490.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are deeply grateful to all the colleagues of Department of Genetics and Molecular Biology. This work was supported by a grant from the Isfahan University of Medical Sciences.

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Khanahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, Z., Shariati, L., Khanahmad, H. et al. A Lentiviral Vector Expressing Desired Gene Only in Transduced Cells: An Approach for Suicide Gene Therapy. Mol Biotechnol 57, 793–800 (2015). https://doi.org/10.1007/s12033-015-9872-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-015-9872-3

Keywords

Navigation