Skip to main content
Log in

Transgenic Mouse Milk Expressing Human Bile Salt-Stimulated Lipase Improves the Survival and Growth Status of Premature Mice

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The lactating human mammary gland and the pancreas both produce bile salt-stimulated lipase (BSSL), a lipolytic enzyme acting on a wide range of substrates, including triglyceride, cholesterol esters, and fat-soluble vitamins esters. Breast milk BSSL has a particularly important role in the digestion of milk fat by newborn infants. We report the generation of transgenic mice that harbored a human BSSL gene controlled by a mammary gland-specific promoter. BSSL levels in transgenic mouse milk were raised to 376.8 μg/ml, corresponding to an activity of 9.15 U/ml. Premature wild-type neonates nursed by transgenic dams exhibited significantly higher survival rate than did the control neonates nursed by wild dams (95 vs. 83.3 % and, P < 0.05). They also showed 43.8 % greater body weight gain and 33.3 % lesser fecal crude fat levels than did the controls. This study provides significant evidence that increased levels of BSSL in milk may reduce mortality and improve the growth and fat absorption in premature mice during neonatal development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Herrera, E., & Amusquivar, E. (2000). Lipid metabolism in the fetus and the newborn. Diabetes/Metabolism Research and Reviews, 16(3), 202–210.

    Article  CAS  Google Scholar 

  2. Stromqvist, M., Tornell, J., Edlund, M., Edlund, A., Johansson, T., Lindgren, K., et al. (1996). Recombinant human bile salt-stimulated lipase: An example of defective O-glycosylation of a protein produced in milk of transgenic mice. Transgenic Research, 5(6), 475–485.

    Article  CAS  Google Scholar 

  3. Hamosh, M. (1987). Lipid metabolism in premature infants. Biology of the Neonate, 52(Suppl 1), 50–64.

    Article  CAS  Google Scholar 

  4. Hui, D. Y., & Howles, P. N. (2002). Carboxyl ester lipase: Structure–function relationship and physiological role in lipoprotein metabolism and atherosclerosis. Journal of Lipid Research, 43(12), 2017–2030.

    Article  CAS  Google Scholar 

  5. Howles, P. N., Stemmerman, G. N., Fenoglio-Preiser, C. M., & Hui, D. Y. (1999). Carboxyl ester lipase activity in milk prevents fat-derived intestinal injury in neonatal mice. American Journal of Physiology, 277(3 Pt 1), G653–G661.

    CAS  Google Scholar 

  6. Bläckberg, L., Duan, R. D., & Sternby, B. (1997). Purification of carboxyl ester lipase (bile salt-stimulated lipase) from human milk and pancreas. Methods in Enzymology, 284, 185–194.

    Article  Google Scholar 

  7. Sahasrabudhe, A. V., Solapure, S. M., Khurana, R., Suryanarayan, V., Ravishankar, S., deSousa, S. M., et al. (1998). Production of recombinant human bile salt stimulated lipase and its variant in Pichia pastoris. Protein Expression and Purification, 14(3), 425–433.

    Article  CAS  Google Scholar 

  8. Poorkhalkali, N., Lidmer, A. S., Lundberg, L. G., Dalrymple, M. A., Gibson, Y., Taylor, L., et al. (1998). Bile salt-stimulated lipase (BSSL) distribution in rat, mouse and transgenic mouse expressing human BSSL. Histochemistry and Cell Biology, 110(4), 367–376.

    Article  CAS  Google Scholar 

  9. Howles, P. N., Carter, C. P., & Hui, D. Y. (1996). Dietary free and esterified cholesterol absorption in cholesterol esterase (bile salt-stimulated lipase) gene-targeted mice. Journal of Biological Chemistry, 271(12), 7196–7202.

    Article  CAS  Google Scholar 

  10. Weng, W., Li, L., van Bennekum, A. M., Potter, S. H., Harrison, E. H., Blaner, W. S., et al. (1999). Intestinal absorption of dietary cholesteryl ester is decreased but retinyl ester absorption is normal in carboxyl ester lipase knockout mice. Biochemistry, 38(13), 4143–4149.

    Article  CAS  Google Scholar 

  11. Loctin, J., & Delost, P. (1983). Somatic development in premature mice from birth to weaning. Reproduction, Nutrition, Development, 23(5), 915–926.

    Article  CAS  Google Scholar 

  12. Hernell, O., & Olivecrona, T. (1974). Human milk lipases. I. Serum stimulated lipase. Journal of Lipid Research, 15(4), 367–374.

    CAS  Google Scholar 

  13. Yu, S., Liang, M., Fan, B., Xu, H., Li, C., Zhang, Q., et al. (2006). Maternally derived recombinant human anti-hantavirus monoclonal antibodies are transferred to mouse offspring during lactation and neutralize virus in vitro. Journal of Virology, 80(8), 4183–4186.

    Article  CAS  Google Scholar 

  14. Zhang, R., Rao, M., Li, C., Cao, J., Meng, Q., Zheng, M., et al. (2009). Functional recombinant human anti-HAV antibody expressed in milk of transgenic mice. Transgenic Research, 18(3), 445–453.

    Article  CAS  Google Scholar 

  15. Wang, Y., Tong, J., Li, S., Zhang, R., Chen, L., Wang, Y., et al. (2011). Over-expression of human lipoprotein lipase in mouse mammary glands leads to reduction of milk triglyceride and delayed growth of suckling pups. PLoS ONE, 6(6), e20895.

    Article  CAS  Google Scholar 

  16. Miller, R., & Lowe, M. E. (2008). Carboxyl ester lipase from either mother’s milk or the pancreas is required for efficient dietary triglyceride digestion in suckling mice. Journal of Nutrition, 138(5), 927–930.

    CAS  Google Scholar 

  17. Lombardo, D. (2001). Bile salt-dependent lipase: Its pathophysiological implications. Biochimica et Biophysica Acta, 1533(1), 1–28.

    Article  CAS  Google Scholar 

  18. Andersson, E. L., Hernell, O., Blackberg, L., Falt, H., & Lindquist, S. (2011). Bile salt-stimulated lipase and pancreatic lipase-related protein 2: Key enzymes for lipid digestion in the newborn examined using the Caco-2 cell line. Journal of Lipid Research, 52(11), 1949–1956.

    Article  CAS  Google Scholar 

  19. Wang, C. S., Martindale, M. E., King, M. M., & Tang, J. (1989). Bile-salt-activated lipase: Effect on kitten growth rate. American Journal of Clinical Nutrition, 49(3), 457–463.

    CAS  Google Scholar 

  20. Li, X., Lindquist, S., Lowe, M., Noppa, L., & Hernell, O. (2007). Bile salt-stimulated lipase and pancreatic lipase-related protein 2 are the dominating lipases in neonatal fat digestion in mice and rats. Pediatric Research, 62(5), 537–541.

    Article  CAS  Google Scholar 

  21. Pamblanco, M., Ten, A., & Comin, J. (1987). Bile salt-stimulated lipase activity in human colostrum from mothers of infants of different gestational age and birthweight. Acta Paediatrica Scand, 76(2), 328–331.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Transgenic Breeding Program of China (2009ZX08007-001B) and (2009ZX08009-139B), Bengbu Medical College (Bykf13A01), and Funds for Distinguished Young Scholar of Anhui Province, China (2013SQRL050ZD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Li.

Additional information

Yuanyuan Wang and Zheya Sheng have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Sheng, Z., Wang, Y. et al. Transgenic Mouse Milk Expressing Human Bile Salt-Stimulated Lipase Improves the Survival and Growth Status of Premature Mice. Mol Biotechnol 57, 287–297 (2015). https://doi.org/10.1007/s12033-014-9822-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-014-9822-5

Keywords

Navigation