Skip to main content

Advertisement

Log in

Impact of Using Different Promoters and Matrix Attachment Regions on Recombinant Protein Expression Level and Stability in Stably Transfected CHO Cells

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

High expression level and long-term expression stability are required for therapeutic protein production in mammalian cells. Three commonly used promoters from the simian virus 40 (SV40), the CHO elongation factor 1α gene (EF1α), and the human cytomegalovirus major immediate early gene (CMV) and two matrix attachment regions from the chicken lysozyme gene (cMAR) and the human interferon β (iMAR) were evaluated for enhancing recombinant gene expression level and stability in stably transfected CHO cells. In the absence of MAR elements, the SV40 promoter gave lower expression level but higher stability than the EF1α promoter and the CMV promoter. The inclusion of MAR elements did not increase the integrated gene copies for all promoters but did enhance expression level for only the SV40 promoter. The enhanced gene expression was due to an increase in mRNA levels. Neither MAR elements enhance gene expression stability during long-term culture. The combinations of SV40 promoter and MAR elements are the best for obtaining both high expression level and stability. The information presented here would be valuable to those developing vectors for generation of CHO cell lines with stable and high productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ho, S. C. L., Tong, Y. W., & Yang, Y. S. (2013). Generation of monoclonal antibody-producing mammalian cell lines. Pharmaceutical Bioprocessing, 1, 71–87.

    Article  Google Scholar 

  2. Wurm, F. M. (2004). Production of recombinant protein therapeutics in cultivated mammalian cells. Nature Biotechnology, 22, 1393–1398.

    Article  CAS  Google Scholar 

  3. Barnes, L. M., Bentley, C. M., & Dickson, A. J. (2001). Characterization of the stability of recombinant protein production in the GS-NS0 expression system. Biotechnology and Bioengineering, 73, 261–270.

    Article  CAS  Google Scholar 

  4. Festenstein, R., Tolaini, M., Corbella, P., Mamalaki, C., Parrington, J., Fox, M., et al. (1996). Locus control region function and heterochromatin-induced position effect variegation. Science, 271, 1123–1125.

    Article  CAS  Google Scholar 

  5. Goetze, S., Baer, A., Winkelmann, S., Nehlsen, K., Seibler, J., Maass, K., et al. (2005). Performance of genomic bordering elements at predefined genomic loci. Molecular and Cellular Biology, 25, 2260–2272.

    Article  CAS  Google Scholar 

  6. Jordan, A., Defechereux, P., & Verdin, E. (2001). The site of HIV-1 integration in the human genome determines basal transcriptional activity and response to Tat transactivation. EMBO Journal, 20, 1726–1738.

    Article  CAS  Google Scholar 

  7. Rita Costa, A., Elisa Rodrigues, M., Henriques, M., Azeredo, J., & Oliveira, R. (2010). Guidelines to cell engineering for monoclonal antibody production. European Journal of Pharmaceutics and Biopharmaceutics, 74, 127–138.

    Article  CAS  Google Scholar 

  8. Dorai, H., Corisdeo, S., Ellis, D., Kinney, C., Chomo, M., Hawley-Nelson, P., et al. (2012). Early prediction of instability of chinese hamster ovary cell lines expressing recombinant antibodies and antibody-fusion proteins. Biotechnology and Bioengineering, 109, 1016–1030.

    Article  CAS  Google Scholar 

  9. Fann, C. H., Guirgis, F., Chen, G., Lao, M. S., & Piret, J. M. (2000). Limitations to the amplification and stability of human tissue-type plasminogen activator expression by Chinese hamster ovary cells. Biotechnology and Bioengineering, 69, 204–212.

    Article  CAS  Google Scholar 

  10. He, L., Winterrowd, C., Kadura, I., & Frye, C. (2012). Transgene copy number distribution profiles in recombinant CHO cell lines revealed by single cell analyses. Biotechnology and Bioengineering, 109, 1713–1722.

    Article  CAS  Google Scholar 

  11. Jun, S. C., Kim, M. S., Hong, H. J., & Lee, G. M. (2006). Limitations to the development of humanized antibody producing Chinese hamster ovary cells using glutamine synthetase-mediated gene amplification. Biotechnol. Progr., 22, 770–780.

    Article  CAS  Google Scholar 

  12. Kim, M., O’Callaghan, P. M., Droms, K. A., & James, D. C. (2011). A mechanistic understanding of production instability in CHO cell lines expressing recombinant monoclonal antibodies. Biotechnology and Bioengineering, 108, 2434–2446.

    Article  CAS  Google Scholar 

  13. Kim, S. J., Kim, N. S., Ryu, C. J., Hong, H. J., & Lee, G. M. (1998). Characterization of chimeric antibody producing CHO cells in the course of dihydrofolate reductase-mediated gene amplification and their stability in the absence of selective pressure. Biotechnology and Bioengineering, 58, 73–84.

    Article  CAS  Google Scholar 

  14. Osterlehner, A., Simmeth, S., & Goepfert, U. (2011). Promoter methylation and transgene copy numbers predict unstable protein production in recombinant chinese hamster ovary cell lines. Biotechnology and Bioengineering, 108, 2670–2681.

    Article  CAS  Google Scholar 

  15. Strutzenberger, K., Borth, N., Kunert, R., Steinfellner, W., & Katinger, H. (1999). Changes during subclone development and ageing of human antibody-producing recombinant CHO cells. Journal of Biotechnology, 69, 215–226.

    Article  CAS  Google Scholar 

  16. Yang, Y., Mariati, Chusainow, J., & Yap, M. G. (2010). DNA methylation contributes to loss in productivity of monoclonal antibody-producing CHO cell lines. Journal of Biotechnology, 147, 180–185.

    Article  CAS  Google Scholar 

  17. Deer, J. R., & Allison, D. S. (2004). High-level expression of proteins in mammalian cells using transcription regulatory sequences from the Chinese hamster EF-1 alpha gene. Biotechnology Progress, 20, 880–889.

    Article  CAS  Google Scholar 

  18. Paredes, V., Park, J. S., Jeong, Y., Yoon, J., & Baek, K. (2013). Unstable expression of recombinant antibody during long-term culture of CHO cells is accompanied by histone H3 hypoacetylation. Biotechnology Letters, 35, 987–993.

    Article  CAS  Google Scholar 

  19. Galbete, J. L., Bucetaz, M., & Mermod, N. (2009). MAR elements regulate the probability of epigenetic switching between active and inactive gene expression. Molecular Biosystems, 5, 143–150.

    Article  Google Scholar 

  20. Byun, H. M., Suh, D. C., Jeong, Y. S., Wee, H. S., Kim, J. M., Kim, W. K., et al. (2005). Plasmid vectors harboring cellular promoters can induce prolonged gene expression in hematopoietic and mesenchymal progenitor cells. Biochemical and Biophysical Research Communications, 332, 518–523.

    Article  CAS  Google Scholar 

  21. Damdindorj, L., Karnan, S., Ota, A., Takahashi, M., Konishi, Y., Hossain, E., et al. (2012). Assessment of the long-term transcriptional activity of a 550-bp-long human beta-actin promoter region. Plasmid, 68, 195–200.

    Article  CAS  Google Scholar 

  22. Gill, D. R., Smyth, S. E., Goddard, C. A., Pringle, I. A., Higgins, C. F., Colledge, W. H., et al. (2001). Increased persistence of lung gene expression using plasmids containing the ubiquitin C or elongation factor 1 alpha promoter. Gene Therapy, 8, 1539–1546.

    Article  CAS  Google Scholar 

  23. Gopalkrishnan, R. V., Christiansen, K. A., Goldstein, N. I., DePinho, R. A., & Fisher, P. B. (1999). Use of the human EF-1 alpha promoter for expression can significantly increase success in establishing stable cell lines with consistent expression: a study using the tetracycline-inducible system in human cancer cells. Nucleic Acids Research, 27, 4775–4782.

    Article  CAS  Google Scholar 

  24. Teschendorf, C., Warrington, K. H., Siemann, D. W., & Muzyczka, N. (2002). Comparison of the EF-1 alpha and the CMV promoter for engineering stable tumor cell lines using recombinant adeno-associated virus. Anticancer Research, 22, 3325–3330.

    CAS  Google Scholar 

  25. Chan, K. K. K., Wu, S. M., Nissom, P. M., Oh, S. K. W., & Choo, A. B. H. (2008). Generation of high-level stable transgene expressing human embryonic stem cell lines using Chinese hamster elongation factor-1 alpha promoter system. Stem Cells and Development, 17, 825–836.

    Article  CAS  Google Scholar 

  26. Bode, J., Benham, C., Knopp, A., & Mielke, C. (2000). Transcriptional augmentation: Modulation of gene expression by scaffold/matrix-attached regions (S/MAR elements). Critical Reviews in Eukaryotic Gene, 10, 73–90.

    CAS  Google Scholar 

  27. Harraghy, N., Gaussin, A., & Mermod, N. (2008). Sustained transgene expression using MAR elements. Current Gene Therapy, 8, 353–366.

    Article  CAS  Google Scholar 

  28. Araki, Y., Hamafuji, T., Noguchi, C., & Shimizu, N. (2012). Efficient recombinant production in mammalian cells using a novel IR/MAR gene amplification method. PLoS ONE, 7, e41787.

    Article  CAS  Google Scholar 

  29. Kim, J. D., Yoon, Y., Hwang, H. Y., Park, J. S., Yu, S., Lee, J., et al. (2005). Efficient selection of stable Chinese hamster ovary (CHO) cell lines for expression of recombinant proteins by using human interferon beta SAR element. Biotechnology Progress, 21, 933–937.

    Article  CAS  Google Scholar 

  30. Kim, J. M., Kim, J. S., Park, D. H., Kang, H. S., Yoon, J., Baek, K., et al. (2004). Improved recombinant gene expression in CHO cells using matrix attachment regions. Journal of Biotechnology, 107, 95–105.

    Article  CAS  Google Scholar 

  31. Otte, A. P., Kwaks, T. H. J., van Blokland, R. J. M., Sewalt, R. G. A. B., Verhees, J., Klaren, V. N. A., et al. (2007). Various expression-augmenting DNA elements benefit from STAR-select, a novel high stringency selection system for protein expression. Biotechnology Progress, 23, 801–807.

    Article  CAS  Google Scholar 

  32. Wang, F., Wang, T. Y., Tang, Y. Y., Zhang, J. H., & Yang, X. J. (2012). Different matrix attachment regions flanking a transgene effectively enhance gene expression in stably transfected Chinese hamster ovary cells. Gene, 500, 59–62.

    Article  CAS  Google Scholar 

  33. Wang, T. Y., Yang, R., Qin, C. A., Wang, L., & Yang, X. J. (2008). Enhanced expression of transgene in CHO cells using matrix attachment region. Cell Biology International, 32, 1279–1283.

    Article  CAS  Google Scholar 

  34. Wang, T. Y., Zhang, J. H., Jing, C. Q., Yang, X. J., & Lin, J. T. (2010). Positional effects of the matrix attachment region on transgene expression in stably transfected CHO cells. Cell Biology International, 34, 141–145.

    Article  Google Scholar 

  35. Zahn-Zabal, M., Kobr, M., Girod, P. A., Imhof, M., Chatellard, P., de Jesus, M., et al. (2001). Development of stable cell lines for production or regulated expression using matrix attachment regions. Journal of Biotechnology, 87, 29–42.

    Article  CAS  Google Scholar 

  36. Girod, P. A., Nguyen, D. Q., Calabrese, D., Puttini, S., Grandjean, M., Martinet, D., et al. (2007). Genome-wide prediction of matrix attachment regions that increase gene expression in mammalian cells. Nature Methods, 4, 747–753.

    Article  CAS  Google Scholar 

  37. Girod, P. A., Zahn-Zabal, M., & Mermod, N. (2005). Use of the chicken lysozyme 5′ matrix attachment region to generate high producer CHO cell lines. Biotechnology and Bioengineering, 91, 1–11.

    Article  CAS  Google Scholar 

  38. Dang, Q., Auten, J., & Plavec, I. (2000). Human beta interferon scaffold attachment region inhibits de novo methylation and confers long-term, copy number-dependent expression to a retroviral vector. Journal of Virology, 74, 2671–2678.

    Article  CAS  Google Scholar 

  39. Moreno, R., Martinez, I., Petriz, J., Nadal, M., Tintore, X., Gonzalez, J. R., et al. (2011). The beta-interferon scaffold attachment region confers high-level transgene expression and avoids extinction by epigenetic modifications of integrated provirus in adipose tissue-derived human mesenchymal stem cells. Tissue Engineering Part C: Methods, 17, 275–287.

    Article  CAS  Google Scholar 

  40. Ho, S. C. L., Bardor, M., Feng, H. T., Mariati, Tong, Y. W., Song, Z. W., et al. (2012). IRES-mediated Tricistronic vectors for enhancing generation of high monoclonal antibody expressing CHO cell lines. Journal of Biotechnology, 157, 130–139.

    Article  CAS  Google Scholar 

  41. Piechaczek, C., Fetzer, C., Baiker, A., Bode, J., & Lipps, H. J. (1999). A vector based on the SV40 origin of replication and chromosomal S/MARs replicates episomally in CHO cells. Nucleic Acids Research, 27, 426–428.

    Article  CAS  Google Scholar 

  42. Chusainow, J., Yang, Y. S., Yeo, J. H., Toh, P. C., Asvadi, P., Wong, N. S., et al. (2009). A study of monoclonal antibody-producing CHO cell lines: what makes a stable high producer? Biotechnology and Bioengineering, 102, 1182–1196.

    Article  CAS  Google Scholar 

  43. Sautter, K., & Enenkel, B. (2005). Selection of high-producing CHO cells using NPT selection marker with reduced enzyme activity. Biotechnology and Bioengineering, 89, 530–538.

    Article  CAS  Google Scholar 

  44. Ng, S. K., Wang, D. I. C., & Yap, M. G. S. (2007). Application of destabilizing sequences on selection marker for improved recombinant protein productivity in CHO-DG44. Metabolic Engineering, 9, 304–316.

    Article  CAS  Google Scholar 

  45. Bailey, L. A., Hatton, D., Field, R., & Dickson, A. J. (2012). Determination of Chinese hamster ovary cell line stability and recombinant antibody expression during long-term culture. Biotechnology and Bioengineering, 109, 2093–2103.

    Article  CAS  Google Scholar 

  46. Senigl, F., Plachy, J., & Hejnar, J. (2008). The core element of a CpG island protects avian sarcoma and leukosis virus-derived vectors from transcriptional silencing. Journal of Virology, 82, 7818–7827.

    Article  CAS  Google Scholar 

  47. Swindle, C. S., Kim, H. G., & Klug, C. A. (2004). Mutation of CpGs in the murine stem cell virus retroviral vector long terminal repeat represses silencing in embryonic stem cells. Journal of Biological Chemistry, 279, 34–41.

    Article  CAS  Google Scholar 

  48. Harraghy, N., Regamey, A., Girod, P. A., & Mermod, N. (2011). Identification of a potent MAR element from the mouse genome and assessment of its activity in stable and transient transfections. Journal of Biotechnology, 154, 11–20.

    Article  CAS  Google Scholar 

  49. Kalwy, S. (2005) Towards stronger gene expression: A promoter’s tale, In Presentation done at: 19th European Society for Animal Cell Technology (ESACT) meeting, Harrogate, England.

Download references

Acknowledgments

This work was supported by the Biomedical Research Council/Science and Engineering Research Council of A*STAR (Agency for Science, Technology and Research), Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuansheng Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 22 kb)

Supplementary material 2 (DOCX 603 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho, S.C.L., Mariati, Yeo, J.H.M. et al. Impact of Using Different Promoters and Matrix Attachment Regions on Recombinant Protein Expression Level and Stability in Stably Transfected CHO Cells. Mol Biotechnol 57, 138–144 (2015). https://doi.org/10.1007/s12033-014-9809-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-014-9809-2

Keywords

Navigation