Skip to main content

Advertisement

Log in

Development of a Single-Replicon miniBYV Vector for Co-expression of Heterologous Proteins

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

In planta production of recombinant proteins, including vaccine antigens and monoclonal antibodies, continues gaining acceptance. With the broadening range of target proteins, the need for vectors with higher performance is increasing. Here, we have developed a single-replicon vector based on beet yellows virus (BYV) that enables co-delivery of two target genes into the same host cell, resulting in transient expression of each target. This BYV vector maintained genetic stability during systemic spread throughout the host plant, Nicotiana benthamiana. Furthermore, we have engineered a miniBYV vector carrying the sequences encoding heavy and light chains of a monoclonal antibody (mAb) against protective antigen (PA) of Bacillius anthracis, and achieved the expression of the full-length functional anti-PA mAb at ~300 mg/kg of fresh leaf tissue. To demonstrate co-expression and functionality of two independent proteins, we cloned the sequences of the Pfs48/45 protein of Plasmodium falciparum and endoglycosidase F (PNGase F) from Flavobacterium meningosepticum into the miniBYV vector under the control of two subgenomic RNA promoters. Agroinfiltration of N. benthamiana with this miniBYV vector resulted in accumulation of biologically active Pfs48/45 that was devoid of N-linked glycosylation and had correct conformation and epitope display. Overall, our findings demonstrate that the new BYV-based vector is capable of co-expressing two functionally active recombinant proteins within the same host cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Drugmand, J. C., Schneider, Y. J., & Agathos, S. N. (2012). Insect cells as factories for biomanufacturing. Biotechnology Advances, 30(5), 1140–1157.

    Article  CAS  Google Scholar 

  2. Kushnir, N., Streatfield, S. J., & Yusibov, V. (2012). Virus-like particles as a highly efficient vaccine platform: Diversity of targets and production systems and advances in clinical development. Vaccine, 31(1), 58–83.

    Article  CAS  Google Scholar 

  3. Mena, J. A., & Kamen, A. A. (2011). Insect cell technology is a versatile and robust vaccine manufacturing platform. Expert Review of Vaccines, 10(7), 1063–1081.

    Article  CAS  Google Scholar 

  4. Zhu, J. (2012). Mammalian cell protein expression for biopharmaceutical production. Biotechnology Advances, 30(5), 1158–1170.

    Article  CAS  Google Scholar 

  5. Yusibov, V., et al. (2013). Hybrid viral vectors for vaccine and antibody production in plants. Current Pharmaceutical Design, 19(31), 5574–5586.

    Article  CAS  Google Scholar 

  6. Verch, T., Yusibov, V., & Koprowski, H. (1998). Expression and assembly of a full-length monoclonal antibody in plants using a plant virus vector. Journal of Immunological Methods, 220(1–2), 69–75.

    Article  CAS  Google Scholar 

  7. Gleba, Y., Klimyuk, V., & Marillonnet, S. (2007). Viral vectors for the expression of proteins in plants. Current Opinion in Biotechnology, 18(2), 134–141.

    Article  CAS  Google Scholar 

  8. Roy, G., et al. (2011). Co-expression of multiple target proteins in plants from a tobacco mosaic virus vector using a combination of homologous and heterologous subgenomic promoters. Archives of Virology, 156(11), 2057–2061.

    Article  CAS  Google Scholar 

  9. Dolja, V. V., Kreuze, J. F., & Valkonen, J. P. (2006). Comparative and functional genomics of closteroviruses. Virus Research, 117(1), 38–51.

    Article  CAS  Google Scholar 

  10. Agranovsky, A. A., et al. (1994). Beet yellows closterovirus: Complete genome structure and identification of a leader papain-like thiol protease. Virology, 198(1), 311–324.

    Article  CAS  Google Scholar 

  11. Peremyslov, V. V., Hagiwara, Y., & Dolja, V. V. (1998). Genes required for replication of the 15.5-kilobase RNA genome of a plant closterovirus. Journal of Virology, 72(7), 5870–5876.

    CAS  Google Scholar 

  12. Alzhanova, D. V., et al. (2000). Genetic analysis of the cell-to-cell movement of beet yellows closterovirus. Virology, 268(1), 192–200.

    Article  CAS  Google Scholar 

  13. Alzhanova, D. V., et al. (2007). Virion tails of beet yellows virus: Coordinated assembly by three structural proteins. Virology, 359(1), 220–226.

    Article  CAS  Google Scholar 

  14. Napuli, A. J., et al. (2003). The 64-kilodalton capsid protein homolog of beet yellows virus is required for assembly of virion tails. Journal of Virology, 77(4), 2377–2384.

    Article  CAS  Google Scholar 

  15. Peremyslov, V. V., Pan, Y. W., & Dolja, V. V. (2004). Movement protein of a closterovirus is a type III integral transmembrane protein localized to the endoplasmic reticulum. Journal of Virology, 78(7), 3704–3709.

    Article  CAS  Google Scholar 

  16. Prokhnevsky, A. I., et al. (2002). Interaction between long-distance transport factor and Hsp70-related movement protein of beet yellows virus. Journal of Virology, 76(21), 11003–11011.

    Article  CAS  Google Scholar 

  17. Reed, J. C., et al. (2003). Suppressor of RNA silencing encoded by Beet yellows virus. Virology, 306(2), 203–209.

    Article  CAS  Google Scholar 

  18. Peremyslov, V. V., Hagiwara, Y., & Dolja, V. V. (1999). HSP70 homolog functions in cell-to-cell movement of a plant virus. Proceedings of the National Academy of Sciences of the United States of America, 96(26), 14771–14776.

    Article  CAS  Google Scholar 

  19. Hull, A. K., et al. (2005). Human-derived, plant-produced monoclonal antibody for the treatment of anthrax. Vaccine, 23(17–18), 2082–2086.

    Article  CAS  Google Scholar 

  20. Zhu, H. Y., et al. (1998). Nucleotide sequence and genome organization of grapevine leafroll-associated virus-2 are similar to beet yellows virus, the closterovirus type member. The Journal of General Virology, 79(Pt 5), 1289–1298.

    CAS  Google Scholar 

  21. Karasev, A. V., et al. (1996). Organization of the 3′-terminal half of beet yellow stunt virus genome and implications for the evolution of closteroviruses. Virology, 221(1), 199–207.

    Article  CAS  Google Scholar 

  22. Mett, V., et al. (2011). A non-glycosylated, plant-produced human monoclonal antibody against anthrax protective antigen protects mice and non-human primates from B. anthracis spore challenge. Human vaccines, 7, 183–190.

    Article  CAS  Google Scholar 

  23. Brendel, V., Xing, L., & Zhu, W. (2004). Gene structure prediction from consensus spliced alignment of multiple ESTs matching the same genomic locus. Bioinformatics, 20(7), 1157–1169.

    Article  CAS  Google Scholar 

  24. Mamedov, T., et al. (2012). Production of non-glycosylated recombinant proteins in Nicotiana benthamiana plants by co-expressing bacterial PNGase F. Plant Biotechnology Journal, 10(7), 773–782.

    Article  CAS  Google Scholar 

  25. Chapman, E. J., et al. (2004). Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step. Genes and Development, 18(10), 1179–1186.

    Article  CAS  Google Scholar 

  26. Kasschau, K. D., & Carrington, J. C. (2001). Long-distance movement and replication maintenance functions correlate with silencing suppression activity of potyviral HC-Pro. Virology, 285(1), 71–81.

    Article  CAS  Google Scholar 

  27. Kasschau, K. D., et al. (2003). P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Developmental Cell, 4(2), 205–217.

    Article  CAS  Google Scholar 

  28. Towbin, H., Staehelin, T., & Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proceedings of the National Academy of Sciences of the United States of America, 76(9), 4350–4354.

    Article  CAS  Google Scholar 

  29. Outchkourov, N., et al. (2007). Epitope analysis of the malaria surface antigen pfs48/45 identifies a subdomain that elicits transmission blocking antibodies. The Journal of Biological Chemistry, 282(23), 17148–17156.

    Article  CAS  Google Scholar 

  30. Roeffen, W., et al. (2001). Plasmodium falciparum: Production and characterization of rat monoclonal antibodies specific for the sexual-stage Pfs48/45 antigen. Experimental Parasitology, 97(1), 45–49.

    Article  CAS  Google Scholar 

  31. Chiba, M., et al. (2006). Diverse suppressors of RNA silencing enhance agroinfection by a viral replicon. Virology, 346(1), 7–14.

    Article  CAS  Google Scholar 

  32. Dolja, V. V., & Koonin, E. V. (2013). The closterovirus-derived gene expression and RNA interference vectors as tools for research and plant biotechnology. Frontiers in Microbiology, 4, 83.

    Article  CAS  Google Scholar 

  33. Kurth, E. G., et al. (2012). Virus-derived gene expression and RNA interference vector for grapevine. Journal of Virology, 86(11), 6002–6009.

    Article  CAS  Google Scholar 

  34. Giritch, A., et al. (2006). Rapid high-yield expression of full-size IgG antibodies in plants coinfected with noncompeting viral vectors. Proceedings of the National Academy of Sciences of the United States of America, 103(40), 14701–14706.

    Article  CAS  Google Scholar 

  35. Grohs, B. M., et al. (2010). Plant-produced trastuzumab inhibits the growth of HER2 positive cancer cells. Journal of Agricultural and Food Chemistry, 58(18), 10056–10063.

    Article  CAS  Google Scholar 

  36. Roy, G., et al. (2010). A novel two-component Tobacco mosaic virus-based vector system for high-level expression of multiple therapeutic proteins including a human monoclonal antibody in plants. Virology, 405(1), 93–99.

    Article  CAS  Google Scholar 

  37. Sainsbury, F., & Lomonossoff, G. P. (2008). Extremely high-level and rapid transient protein production in plants without the use of viral replication. Plant Physiology, 148(3), 1212–1218.

    Article  CAS  Google Scholar 

  38. Chen, Q., et al. (2011). Geminiviral vectors based on bean yellow dwarf virus for production of vaccine antigens and monoclonal antibodies in plants. Human vaccines, 7(3), 331–338.

    Article  CAS  Google Scholar 

  39. Huang, Z., et al. (2010). High-level rapid production of full-size monoclonal antibodies in plants by a single-vector DNA replicon system. Biotechnology and Bioengineering, 106(1), 9–17.

    CAS  Google Scholar 

  40. Kirkpatrick, R. B., et al. (1995). Heavy chain dimers as well as complete antibodies are efficiently formed and secreted from Drosophila via a BiP-mediated pathway. The Journal of Biological Chemistry, 270(34), 19800–19805.

    Article  CAS  Google Scholar 

  41. Leitzgen, K., Knittler, M. R., & Haas, I. G. (1997). Assembly of immunoglobulin light chains as a prerequisite for secretion. A model for oligomerization-dependent subunit folding. The Journal of Biological Chemistry, 272(5), 3117–3123.

    Article  CAS  Google Scholar 

  42. Garabagi, F., et al. (2012). Utility of the P19 suppressor of gene-silencing protein for production of therapeutic antibodies in Nicotiana expression hosts. Plant Biotechnology Journal, 10(9), 1118–1128.

    Article  CAS  Google Scholar 

  43. Culver, J. N., et al. (1993). Genomic position affects the expression of tobacco mosaic virus movement and coat protein genes. Proceedings of the National Academy of Sciences of the United States of America, 90(5), 2055–2059.

    Article  CAS  Google Scholar 

  44. Hagiwara, Y., Peremyslov, V. V., & Dolja, V. V. (1999). Regulation of closterovirus gene expression examined by insertion of a self-processing reporter and by northern hybridization. Journal of Virology, 73(10), 7988–7993.

    CAS  Google Scholar 

  45. Bosch, D., et al. (2013). N-glycosylation of plant-produced recombinant proteins. Current Pharmaceutical Design, 19(31), 5503–5512.

    Article  CAS  Google Scholar 

  46. Gomord, V., et al. (2010). Plant-specific glycosylation patterns in the context of therapeutic protein production. Plant Biotechnology Journal, 8(5), 564–587.

    Article  CAS  Google Scholar 

  47. Jacobs, P. P., & Callewaert, N. (2009). N-glycosylation engineering of biopharmaceutical expression systems. Current Molecular Medicine, 9(7), 774–800.

    Article  CAS  Google Scholar 

  48. Milek, R. L., Stunnenberg, H. G., & Konings, R. N. (2000). Assembly and expression of a synthetic gene encoding the antigen Pfs48/45 of the human malaria parasite Plasmodium falciparum in yeast. Vaccine, 18(14), 1402–1411.

    Article  CAS  Google Scholar 

  49. Wujek, P., et al. (2004). N-glycosylation is crucial for folding, trafficking, and stability of human tripeptidyl-peptidase I. The Journal of biological chemistry, 279(13), 12827–12839.

    Article  CAS  Google Scholar 

  50. Mamedov, T., & Yusibov, V. (2013). In vivo deglycosylation of recombinant proteins in plants by co-expression with bacterial PNGase F. Bioengineered, 4(5), 338–342.

    Article  Google Scholar 

  51. Pushko, P., Pumpens, P., & Grens, E. (2013). Development of virus-like particle technology from small highly symmetric to large complex virus-like particle structures. Intervirology, 56(3), 141–165.

    Article  CAS  Google Scholar 

  52. Dugdale, B., et al. (2013). In plant activation: an inducible, hyperexpression platform for recombinant protein production in plants. The Plant Cell, 25(7), 2429–2443.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Valerian Dolja of Oregon State University for the p35S-BYV-GFP plasmid and M. Levikova for assistance with ELISA. The authors are grateful to Dr. Stephen J. Streatfield for critical reading of the manuscript and Dr. Natasha Kushnir for editorial assistance.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vidadi Yusibov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prokhnevsky, A., Mamedov, T., Leffet, B. et al. Development of a Single-Replicon miniBYV Vector for Co-expression of Heterologous Proteins. Mol Biotechnol 57, 101–110 (2015). https://doi.org/10.1007/s12033-014-9806-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-014-9806-5

Keywords

Navigation