Skip to main content

Advertisement

Log in

High Efficiency Transformation of Banana [Musa acuminata L. cv. Matti (AA)] for Enhanced Tolerance to Salt and Drought Stress Through Overexpression of a Peanut Salinity-Induced Pathogenesis-Related Class 10 Protein

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Bananas and plantains (Musa spp. L.) are important subsistence crops and premium export commodity in several countries, and susceptible to a wide range of environmental and biotic stress conditions. Here, we report efficient, rapid, and reproducible Agrobacterium-mediated transformation and regeneration of an Indian niche cultivar of banana [M. acuminata cv. Matti (AA)]. Apical meristem-derived highly proliferative multiple shoot clump (MSC) explants were transformed with the Agrobacterium strain EHA105 harboring a binary vector pCAMBIA-1301 carrying hptII and uidA. Sequential agro-infiltration (10 min, 400 mmHg), infection (additional 35 min, Agrobacterium density A 600 = 0.8) and co-cultivation (18 h) regimen in 100 µM acetosyringone containing liquid medium were critical factors yielding high transformation efficiency (~81 %) corroborated by transient GUS expression assay. Stable transgenic events were recovered following two cycles of meristem initiation and selection on hygromycin containing medium. Histochemical GUS assay in several tissues of transgenic plants and molecular analyses confirmed stable integration and expression of transgene. The protocol described here allowed recovery of well-established putative transgenic plantlets in as little as 5 months. The transgenic banana plants could be readily acclimatized under greenhouse conditions, and were phenotypically similar to the wild-type untransformed control plants (WT). Transgenic plants overexpressing Salinity-Induced Pathogenesis-Related class 10 protein gene from Arachis hypogaea (AhSIPR10) in banana cv. Matti (AA) showed better photosynthetic efficiency and less membrane damage (P < 0.05) in the presence of NaCl and mannitol in comparison to WT plants suggesting the role of AhSIPR10 in better tolerance of salt stress and drought conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AhSIPR10 :

Arachis hypogaea salinity-induced PR class 10 gene

ECS:

Embryogenic cell suspension

MS:

Murashige and Skoog medium

MSC:

Multiple shoot clump

PR10:

Pathogenesis-related (class 10)

WT:

Wild-type

References

  1. Aquil, B., Jan, A. T., Sarin, N. B., & Haq, Q. M. R. (2012). Micropropagation and genetic transformation of banana for crop improvement and sustainable agriculture. Journal of Crop Science, 3, 64–77.

    Google Scholar 

  2. D’Hont, A., Paget-Goy, A., Escoute, J., & Carreel, F. (2000). The interspecific genome structure of cultivated banana, Musa spp., revealed by genomic DNA in situ hybridization. Theoretical and Applied Genetics, 100, 177–183.

    Article  Google Scholar 

  3. Heslop-Harrison, J. S., & Schwarzacher, T. (2007). Domestication, genomics and future for banana. Annals of Botany, 100, 1073–1084.

    Article  CAS  Google Scholar 

  4. May, G. D., Afza, R., Mason, H. S., Wiecko, A., Novak, F. J., & Arntzen, C. J. (1995). Generation of transgenic banana (Musa acuminata) plants via Agrobacterium-mediated transformation. Nature Biotechnology, 13, 486–492.

    Article  CAS  Google Scholar 

  5. Khanna, H., Becker, D., Kleidon, J., & Dale, J. (2004). Centrifugation assisted Agrobacterium tumefaciens-mediated transformation (CAAT) of embryogenic cell suspensions of banana (Musa spp. Cavendish AAA and Lady finger AAB). Molecular Breeding, 14, 239–252.

    Article  CAS  Google Scholar 

  6. Tripathi, L., Tripathi, J. N., & Tushemereirwe, W. K. (2008). Rapid and efficient production of transgenic East African Highland Banana (Musa spp.) using intercalary meristematic tissues. African Journal of Biotechnology, 10, 1438–1445.

    Google Scholar 

  7. Ghosh, A., Ganapathi, T. R., Nath, P., & Bapat, V. A. (2009). Establishment of embryogenic cell suspension cultures and Agrobacterium-mediated transformation in an important Cavendish banana cv. Robusta (AAA). Plant Cell, Tissue and Organ Culture, 97, 131–139.

    Article  Google Scholar 

  8. Subramanyam, K., Subramanyam, K., Sailaja, K. V., Srinivasulu, M., & Lakshmidevi, K. (2011). Highly efficient Agrobacterium-mediated transformation of banana cv. Rasthali (AAB) via sonication and vacuum infiltration. Plant Cell Reports, 30, 425–436.

    Article  CAS  Google Scholar 

  9. Chong-Pérez, B., Reyes, M., Rojas, L., Ocaña, B., Pérez, B., Kosky, R. G., et al. (2012). Establishment of embryogenic cell suspension cultures and Agrobacterium-mediated transformation in banana cv. ‘Dwarf Cavendish’ (Musa AAA): effect of spermidine on transformation efficiency. Plant Cell, Tissue and Organ Culture, 111, 79–90.

    Article  Google Scholar 

  10. Gilbert, R. A., Glynn, N. C., Comstock, J. C., & Davis, M. J. (2009). Agronomic performance and genetic characterization of sugarcane transformed for resistance to sugarcane yellow leaf virus. Field Crops Research, 111, 39–46.

    Article  Google Scholar 

  11. Sreeramanan, S., Maziah, M., Rosli, N. M., Sariah, M., & Xavier, R. (2006). Enhanced tolerance against a fungal pathogen, Fusarium oxysporum f. sp. cubense (Race 1) in transgenic silk banana. International Journal of Agricultural Research, 4, 342–354.

    Google Scholar 

  12. Liu, J. J., & Ekramoddoullah, A. K. M. (2006). The family 10 of plant pathogenesis-related proteins: Their structure, regulation, and function in response to biotic and abiotic stresses. Physiological and Molecular Plant Pathology, 68, 3–13.

    Article  CAS  Google Scholar 

  13. Kovács, G., Sági, L., Jacon, G., Arinaitwe, G., Busogoro, J. P., Thiry, E., et al. (2012). Expression of a rice chitinase gene in transgenic banana (‘Gros Michel’, AAA genome group) confers resistance to black leaf streak disease. Transgenic Research, 22, 117–130.

    Article  Google Scholar 

  14. Ghag, S. B., Shekhawat, U. K. S., & Ganapathi, T. R. (2012). Petunia floral defensins with unique prodomains as novel candidates for development of Fusarium wilt resistance in transgenic banana plants. PLoS One, 7(6), e39557.

    Article  CAS  Google Scholar 

  15. Xie, Y. R., Chen, Z. Y., Brown, R. L., & Bhatnagar, D. (2010). Expression and functional characterization of two pathogenesis-related protein 10 genes from Zea mays. Journal of Plant Physiology, 167, 121–130.

    Article  CAS  Google Scholar 

  16. Choi, D. S., Hwang, I. S., & Hwang, B. K. (2012). Requirement of the cytosolic interaction between pathogenesis-related protein 10 and leucine-rich protein 1 for cell death and defense signaling in pepper. The Plant Cell, 24, 1675–1690.

    Article  CAS  Google Scholar 

  17. Soh, H. C., Park, A. R., Park, S., Back, K., Yoon, J. B., Park, H. G., et al. (2012). Comparative analysis of pathogenesis-related protein 10 (PR10) genes between fungal resistant and susceptible peppers. European Journal of Plant Pathology, 132, 37–48.

    Article  CAS  Google Scholar 

  18. Takeuchi, K., Gyohda, A., Tominaga, M., Kawakatsu, M., Hatakeyama, A., Ishii, N., et al. (2011). RSOsPR10 expression in response to environmental stresses is regulated antagonistically by jasmonate/ethylene and salicylic acid signaling pathways in rice roots. Plant Cell Physiology, 52, 1686–1696.

    Article  CAS  Google Scholar 

  19. Jain, S., Kumar, D., Jain, M., Chaudhary, P., Deswal, R., & Sarin, N. B. (2012). Ectopic overexpression of a salt stress-induced pathogenesis related class 10 protein (PR10) gene from peanut (Arachis hypogaea L.) affords broad spectrum abiotic stress tolerance in transgenic tobacco. Plant Cell, Tissue and Organ Culture, 109, 19–31.

    Article  CAS  Google Scholar 

  20. Hanafy, M., El-Banna, A., Schumacher, H. M., Jacobsen, H. J., & Hassan, F. (2013). Enhanced tolerance to drought and salt stresses in transgenic faba bean (Vicia faba L.) plants by heterologous expression of the PR10a gene from potato. Plant Cell Reports, 32, 663–674.

    Article  CAS  Google Scholar 

  21. Jain, S., Srivastava, S., Sarin, N. B., & Kav, N. N. V. (2006). Proteomics reveals elevated levels of PR10 proteins in saline-tolerant peanut (Arachis hypogaea) calli. Plant Physiology and Biochemistry, 44, 253–259.

    Article  CAS  Google Scholar 

  22. Uma, S., Mustaffa, M. M., Saraswathi, M. S., & Durai, P. (2010). Exploitation of diploids in Indian banana breeding programs. Acta Horticulturae, 897, 215–223.

    Google Scholar 

  23. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497.

    Article  CAS  Google Scholar 

  24. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual (2nd ed.). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.

    Google Scholar 

  25. Jefferson, R. A. (1987). Assaying chimeric genes in plants: The GUS fusion system. Plant Molecular Biology Reporter, 5, 387–405.

    Article  CAS  Google Scholar 

  26. Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24, 1–15.

    Article  CAS  Google Scholar 

  27. Sairam, R. K., & Srivastava, G. C. (2002). Changes in antioxidant activity in subcellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Science, 162, 897–904.

    Article  CAS  Google Scholar 

  28. Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 189–198.

    Article  CAS  Google Scholar 

  29. Vishnevetsky, J., White, T. L, Jr, Palmateer, A. J., Flaishman, M., Cohen, Y., Elad, Y., et al. (2011). Improved tolerance toward fungal diseases in transgenic Cavendish banana (Musa spp. AAA group) cv. Grand Nain. Transgenic Research, 20, 61–72.

    Article  CAS  Google Scholar 

  30. Shekhawat, U. K. S., & Ganapathi, T. R. (2013). MusaWRKY71 overexpression in banana plants leads to altered abiotic and biotic stress responses. PLoS One, 8(10), e75506. doi:10.1371/journal.pone.0075506.

    Article  CAS  Google Scholar 

  31. Huang, X., Huang, X. L., Xiao, W., Zhao, J. T., Dai, X. M., Chen, Y. F., et al. (2007). Highly efficient Agrobacterium-mediated transformation of embryogenic cell suspensions of Musa acuminata cv. Mas (AA) via a liquid co-cultivation system. Plant Cell Reports, 26, 1755–1762.

    Article  CAS  Google Scholar 

  32. Srivastava, S., Neil Emery, R. J., Kurepin, L. V., Reid, D. M., Fristensky, B., & Kav, N. N. V. (2006). Pea PR10.1 is a ribonuclease and its transgenic expression elevates cytokinin levels. Plant Growth Regulation, 49, 17–25.

    Article  CAS  Google Scholar 

  33. Krishnaswamy, S. S., Srivastava, S., Mohammadi, M., Rahman, M. H., Deyholos, M. K., & Kav, N. N. (2008). Transcriptional profiling of pea ABR17 mediated changes in gene expression in Arabidopsis thaliana. BMC Plant Biology, 8, 91.

    Article  Google Scholar 

  34. Chung, K. M., Igari, K., Uchida, N., & Tasaka, M. (2008). New perspectives on plants defense responses through modulation of developmental pathways. Molecules and Cells, 26, 107–112.

    CAS  Google Scholar 

  35. Rivero, R. M., Gimeno, J., Deynze, A. V., Walia, H., & Blumwald, E. (2010). Enhanced cytokinin synthesis in tobacco plants expressing P SARK :IPT prevents the degradation of photosynthetic protein complexes during drought. Plant Cell Physiology, 51, 1929–1941.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research work was supported by Department of Biotechnology, India (Grant no BT/PR10231/AGR/02/555/2007) to NBS. A.R. acknowledges the financial support from University Grant Commission (UGC). The authors also wish to thank Dr. Anuradha Agarwal, and Dr. Kailash Chander Bansal, Director, National Bureau of Plant Genetic Resources, New Delhi, India for disease-free banana plants. Research in the laboratory of NBS is supported by U.G.C.-C.A.S., U.G.C.-R.N.W., Department of Science and Technology (D.S.T.)-F.I.S.T., and D.S.T.-PURSE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neera Bhalla Sarin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 350 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rustagi, A., Jain, S., Kumar, D. et al. High Efficiency Transformation of Banana [Musa acuminata L. cv. Matti (AA)] for Enhanced Tolerance to Salt and Drought Stress Through Overexpression of a Peanut Salinity-Induced Pathogenesis-Related Class 10 Protein. Mol Biotechnol 57, 27–35 (2015). https://doi.org/10.1007/s12033-014-9798-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-014-9798-1

Key words

Navigation