Skip to main content

Advertisement

Log in

A Novel Approach to Block HIV-1 Coreceptor CXCR4 in Non-toxic Manner

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The chemokine receptor CXCR4 is one of the major coreceptors for human immunodeficiency virus type 1 (HIV-1) and considered as an important therapeutic target. Knockdown of CXCR4 by RNA interference has emerged as a promising strategy for combating HIV-1 infection. However, there is a potential drawback to this strategy as undesired side effects may occur due to the loss of natural function of CXCR4. In this study, we developed a novel approach using a single lentiviral vector to express simultaneously CXCR4 dual-shRNAs and an shRNA-resistant CXCR4 mutant possessing the most possible natural functions of CXCR4 and reduced HIV-1 coreceptor activity. Via this approach we achieved the replacement of endogenous CXCR4 by CXCR4 mutant P191A that could compensate the functional loss of endogenous CXCR4 and significant reduction of HIV-1 replication by 59.2 %. Besides, we demonstrated that construction of recombinant lentiviral vector using 2A peptide-based strategy has significant advantages over using additional promoter-based strategy, including increase of lentivirus titer and avoidance of promoter competition. Therefore, the novel approach to block HIV-1 coreceptor CXCR4 without impairing its normal function provides a new strategy for CXCR4-targeted therapeutics for HIV-1 infection and potential universal applications to knock down a cellular protein in non-toxic manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gorry, P. R., & Ancuta, P. (2011). Coreceptors and HIV-1 pathogenesis. Current HIV/AIDS Reports, 8(1), 45–53.

    Article  Google Scholar 

  2. Alkhatib, G. (2009). The biology of CCR5 and CXCR4. Current Opinion in HIV and AIDS, 4(2), 96–103.

    Article  Google Scholar 

  3. Doranz, B. J., et al. (2001). Safe use of the CXCR4 inhibitor ALX40-4C in humans. AIDS Research and Human Retroviruses, 17(6), 475–486.

    Article  CAS  Google Scholar 

  4. Murakami, T., et al. (1997). A small molecule CXCR4 inhibitor that blocks T cell line-tropic HIV-1 infection. Journal of Experimental Medicine, 186(8), 1389–1393.

    Article  CAS  Google Scholar 

  5. Tamamura, H., et al. (1998). A low-molecular-weight inhibitor against the chemokine receptor CXCR4: a strong anti-HIV peptide T140. Biochemical and Biophysical Research Communications, 253(3), 877–882.

    Article  CAS  Google Scholar 

  6. Hendrix, C. W., et al. (2000). Pharmacokinetics and safety of AMD-3100, a novel antagonist of the CXCR-4 chemokine receptor, in human volunteers. Antimicrobial Agents and Chemotherapy, 44(6), 1667–1673.

    Article  CAS  Google Scholar 

  7. Hendrix, C. W., et al. (2004). Safety, pharmacokinetics, and antiviral activity of AMD3100, a selective CXCR4 receptor inhibitor, in HIV-1 infection. Journal of Acquired Immune Deficiency Syndromes, 37(2), 1253–1262.

    Article  CAS  Google Scholar 

  8. Stone, N. D., et al. (2007). Multiple-dose escalation study of the safety, pharmacokinetics, and biologic activity of oral AMD070, a selective CXCR4 receptor inhibitor, in human subjects. Antimicrobial Agents and Chemotherapy, 51(7), 2351–2358.

    Article  CAS  Google Scholar 

  9. Jahnichen, S., et al. (2010). CXCR4 nanobodies (VHH-based single variable domains) potently inhibit chemotaxis and HIV-1 replication and mobilize stem cells. Proceedings of the National Academy of Science USA, 107(47), 20565–20570.

    Article  CAS  Google Scholar 

  10. Anderson, J., et al. (2003). Potent suppression of HIV type 1 infection by a short hairpin anti-CXCR4 siRNA. AIDS Research and Human Retroviruses, 19(8), 699–706.

    Article  CAS  Google Scholar 

  11. Zhou, N., et al. (2004). Inhibition of HIV-1 fusion with small interfering RNAs targeting the chemokine coreceptor CXCR4. Gene Therapy, 11(23), 1703–1712.

    Article  CAS  Google Scholar 

  12. Schols, D. (2004). HIV co-receptors as targets for antiviral therapy. Current Topics in Medicinal Chemistry, 4(9), 883–893.

    Article  CAS  Google Scholar 

  13. Gonzalo, J. A., et al. (2000). Critical involvement of the chemotactic axis CXCR4/stromal cell-derived factor-1 alpha in the inflammatory component of allergic airway disease. Journal of Immunology, 165(1), 499–508.

    Article  CAS  Google Scholar 

  14. Ratajczak, M. Z., et al. (2006). The pleiotropic effects of the SDF-1-CXCR4 axis in organogenesis, regeneration and tumorigenesis. Leukemia, 20(11), 1915–1924.

    Article  CAS  Google Scholar 

  15. Bleul, C. C., et al. (1996). The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature, 382(6594), 829–833.

    Article  CAS  Google Scholar 

  16. Oberlin, E., et al. (1996). The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature, 382(6594), 833–835.

    Article  CAS  Google Scholar 

  17. Tian, S., et al. (2005). Distinct functional sites for human immunodeficiency virus type 1 and stromal cell-derived factor 1alpha on CXCR4 transmembrane helical domains. Journal of Virology, 79(20), 12667–12673.

    Article  CAS  Google Scholar 

  18. Rubinson, D. A., et al. (2003). A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nature Genetics, 33(3), 401–406.

    Article  CAS  Google Scholar 

  19. Miyagishi, M., & Taira, K. (2002). U6 promoter-driven siRNAs with four uridine 3′ overhangs efficiently suppress targeted gene expression in mammalian cells. Nature Biotechnology, 20(5), 497–500.

    Article  CAS  Google Scholar 

  20. Surabhi, R. M., & Gaynor, R. B. (2002). RNA interference directed against viral and cellular targets inhibits human immunodeficiency Virus Type 1 replication. Journal of Virology, 76(24), 12963–12973.

    Article  CAS  Google Scholar 

  21. Morner, A., et al. (1999). Primary human immunodeficiency virus type 2 (HIV-2) isolates, like HIV-1 isolates, frequently use CCR5 but show promiscuity in coreceptor usage. Journal of Virology, 73(3), 2343–2349.

    CAS  Google Scholar 

  22. Robbins, M. A., et al. (2006). Stable expression of shRNAs in human CD34+ progenitor cells can avoid induction of interferon responses to siRNAs in vitro. Nature Biotechnology, 24(5), 566–571.

    Article  CAS  Google Scholar 

  23. Anderson, J., & Akkina, R. (2005). HIV-1 resistance conferred by siRNA cosuppression of CXCR4 and CCR5 coreceptors by a bispecific lentiviral vector. AIDS Research and Therapy, 2(1), 1.

    Article  Google Scholar 

  24. Szymczak, A. L., et al. (2004). Correction of multi-gene deficiency in vivo using a single ‘self-cleaving’ 2A peptide-based retroviral vector. Nature Biotechnology, 22(5), 589–594.

    Article  CAS  Google Scholar 

  25. Hu, T., et al. (2009). Generation of a stable mammalian cell line for simultaneous expression of multiple genes by using 2A peptide-based lentiviral vector. Biotechnology Letters, 31(3), 353–359.

    Article  CAS  Google Scholar 

  26. Doronina, V. A., et al. (2008). Dissection of a co-translational nascent chain separation event. Biochemical Society Transactions, 36(Pt 4), 712–716.

    Article  CAS  Google Scholar 

  27. Schwarz, D. S., et al. (2006). Designing siRNA that distinguish between genes that differ by a single nucleotide. PLoS Genetics, 2(9), e140.

    Article  Google Scholar 

  28. Judge, A. D., et al. (2005). Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nature Biotechnology, 23(4), 457–462.

    Article  CAS  Google Scholar 

  29. Eekels, J. J., et al. (2012). A competitive cell growth assay for the detection of subtle effects of gene transduction on cell proliferation. Gene Therapy, 19(11), 1058–1064.

    Article  CAS  Google Scholar 

  30. Muller, A., et al. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature, 410(6824), 50–56.

    Article  CAS  Google Scholar 

  31. Burger, J. A., Burger, M., & Kipps, T. J. (1999). Chronic lymphocytic leukemia B cells express functional CXCR4 chemokine receptors that mediate spontaneous migration beneath bone marrow stromal cells. Blood, 94(11), 3658–3667.

    CAS  Google Scholar 

  32. Hutter, G., et al. (2009). Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. New England Journal of Medicine, 360(7), 692–698.

    Article  Google Scholar 

  33. Allers, K., et al. (2011). Evidence for the cure of HIV infection by CCR5Delta32/Delta32 stem cell transplantation. Blood, 117(10), 2791–2799.

    Article  CAS  Google Scholar 

  34. van Lunzen, J., et al. (2007). Transfer of autologous gene-modified T cells in HIV-infected patients with advanced immunodeficiency and drug-resistant virus. Molecular Therapy, 15(5), 1024–1033.

    Google Scholar 

  35. Vets, S., et al. (2012). Lens epithelium-derived growth factor/p75 qualifies as a target for HIV gene therapy in the NSG mouse model. Molecular Therapy, 20(5), 908–917.

    Article  CAS  Google Scholar 

  36. Kohn, D. B., et al. (1999). A clinical trial of retroviral-mediated transfer of a rev-responsive element decoy gene into CD34(+) cells from the bone marrow of human immunodeficiency virus-1-infected children. Blood, 94(1), 368–371.

    CAS  Google Scholar 

  37. Mitsuyasu, R. T., et al. (2009). Phase 2 gene therapy trial of an anti-HIV ribozyme in autologous CD34+ cells. Nature Medicine, 15(3), 285–292.

    Article  CAS  Google Scholar 

  38. ter Brake, O., et al. (2008). Lentiviral vector design for multiple shRNA expression and durable HIV-1 inhibition. Molecular Therapy, 16(3), 557–564.

    Article  Google Scholar 

  39. Eekels, J. J., et al. (2011). Long-term inhibition of HIV-1 replication with RNA interference against cellular co-factors. Antiviral Research, 89(1), 43–53.

    Article  CAS  Google Scholar 

  40. Perez, E. E., et al. (2008). Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nature Biotechnology, 26(7), 808–816.

    Article  CAS  Google Scholar 

  41. Wilen, C. B., et al. (2011). Engineering HIV-resistant human CD4+ T cells with CXCR4-specific zinc-finger nucleases. PLoS Pathogens, 7(4), e1002020.

    Article  CAS  Google Scholar 

  42. DiGiusto, D. L., et al. (2010). RNA-based gene therapy for HIV with lentiviral vector-modified CD34(+) cells in patients undergoing transplantation for AIDS-related lymphoma. Science Translational Medicine, 2(36), 36ra43.

    Article  Google Scholar 

  43. Walker, J. E., et al. (2012). Generation of an HIV-1-resistant immune system with CD34(+) hematopoietic stem cells transduced with a triple-combination anti-HIV lentiviral vector. Journal of Virology, 86(10), 5719–5729.

    Article  CAS  Google Scholar 

  44. Kiem, H. P., et al. (2010). Foamy combinatorial anti-HIV vectors with MGMTP140 K potently inhibit HIV-1 and SHIV replication and mediate selection in vivo. Gene Therapy, 17(1), 37–49.

    Article  CAS  Google Scholar 

  45. Friedrich, B. M., et al. (2011). Host factors mediating HIV-1 replication. Virus Research, 161(2), 101–114.

    Article  CAS  Google Scholar 

  46. Burnett, J. C., Zaia, J. A., & Rossi, J. J. (2012). Creating genetic resistance to HIV. Current Opinion in Immunology, 24(5), 625–632.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Qinxue Hu (Wuhan Institute of Virology, Chinese Academy of Sciences) for technical advice and kindly providing HIV-1 proviral DNA pNL4-3, Dr. Luk van Parijs for kindly providing the plasmid pLentilox3.7, WJ Ouyang for providing cell lines, Yan Wang for technical support of flow cytometric analysis, and RD Hao and SQ Xu for assistance in experiments. The following reagents were obtained through the NIH AIDS Research and Reference Reagent Program, Division of AIDS, NIAID, NIH: Ghost X4 cell line from Dr. Vineet N. KewalRamani and Dr. Dan R. Littman, U373-CXCR4 from Dr. Michael Emerman, and pNL4-3.Luc.R-E- from Dr. Nathaniel Landau. This work was funded by the China National Special Research Program of Major Infectious Diseases (Nos. 2012ZX10001006-002 and 2014ZX10001003) and Hubei Provincial Science & Technology Innovation Team Grant (#2012FFA043). D.G. is also supported by Hubei Province’s Outstanding Medical Academic Leader Program.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deyin Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhou, J., Pan, JA. et al. A Novel Approach to Block HIV-1 Coreceptor CXCR4 in Non-toxic Manner. Mol Biotechnol 56, 890–902 (2014). https://doi.org/10.1007/s12033-014-9768-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-014-9768-7

Keywords

Navigation