Skip to main content

Advertisement

Log in

Optimization of Single-Cell Electroporation Protocol for Forced Gene Expression in Primary Neuronal Cultures

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The development and function of the central nervous system (CNS) are realized through interactions between many neurons. To investigate cellular and molecular mechanisms of the development and function of the CNS, it is thus crucial to be able to manipulate the gene expression of single neurons in a complex cell population. We recently developed a technique for gene silencing by introducing small interfering RNA into single neurons in primary CNS cultures using single-cell electroporation. However, we had not succeeded in forced gene expression by introducing expression plasmids using single-cell electroporation. In the present study, we optimized the experimental conditions to enable the forced expression of green fluorescent protein (GFP) in cultured cerebellar Purkinje neurons using single-cell electroporation. We succeeded in strong GFP expression in Purkinje neurons by increasing the inside diameter of micropipettes or by making the size of the original plasmid smaller by digestion and cyclizing it by ligation. Strong GFP expression in Purkinje neurons electroporated under the optimal conditions continued to be observed for more than 25 days after electroporation. Thus, this technique could be used for forced gene expression in single neurons to investigate cellular and molecular mechanisms of the development, function, and disease of the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Olofsson, J., Nolkrantz, K., Ryttsén, F., Lambie, B. A., Weber, S. G., & Orwar, O. (2003). Single-cell electroporation. Current Opinion in Biotechnology, 14, 29–34.

    Article  CAS  Google Scholar 

  2. Lundqvist, J. A., Sahlin, F., Aberg, M. A. I., Strömberg, A., Eriksson, P. S., & Orwar, O. (1998). Altering the biochemical state of individual cultured cells and organelles with ultramicroelectrodes. Proceedings of the National Academy of Sciences of the United States of America, 95, 10356–10360.

    CAS  Google Scholar 

  3. Nolkrantz, K., Farre, C., Brederlau, A., Karlsson, R. I. D., Brennan, C., Eriksson, P. S., et al. (2001). Electroporation of single cells and tissues with an electrolyte-filled capillary. Analytical Chemistry, 73, 4469–4477.

    Article  CAS  Google Scholar 

  4. Haas, K., Sin, W.-C., Javaherian, A., Li, Z., & Cline, H. T. (2001). Single-cell electroporation for gene transfer in vivo. Neuron, 29, 583–591.

    Article  CAS  Google Scholar 

  5. Rae, J. L., & Levis, R. A. (2002). Single-cell electroporation. Pflügers Archive, 443, 664–670.

    Article  CAS  Google Scholar 

  6. Rathenberg, J., Nevian, T., & Witzemann, V. (2003). High-efficiency transfection of individual neurons using modified electrophysiology techniques. Journal of Neuroscience Methods, 126, 91–98.

    Article  Google Scholar 

  7. Lovell, P., Jezzini, S. H., & Moroz, L. L. (2006). Electroporation of neurons and growth cones in Aplysia californica. Journal of Neuroscience Methods, 151, 114–120.

    Article  Google Scholar 

  8. Huang, Y., & Rubinsky, B. (1999). Micro-electroporation: Improving the efficiency and understanding of electrical permeabilization of cells. Biomedical Microdevices, 2, 145–150.

    Article  Google Scholar 

  9. Khine, M., Lau, A., Ionescu-Zanetti, C., Seo, J., & Lee, L. P. (2005). A single cell electroporation chip. Lab on a Chip, 5, 38–43.

    Article  CAS  Google Scholar 

  10. Vassanelli, S., Bandiera, L., Borgo, M., Cellere, G., Santoni, L., Bersani, C., et al. (2008). Space and time-resolved gene expression experiments on cultured mammalian cells by a single-cell electroporation microarray. New Biotechnology, 25, 55–67.

    Article  CAS  Google Scholar 

  11. Tanaka, M., Yanagawa, Y., & Hirashima, N. (2009). Transfer of small interfering RNA by single-cell electroporation in cerebellar cell cultures. Journal of Neuroscience Methods, 178, 80–86.

    Article  CAS  Google Scholar 

  12. Miyata, M., Kishimoto, Y., Tanaka, M., Hashimoto, K., Hirashima, N., Murata, Y., et al. (2011). A role for myosin Va in cerebellar plasticity and motor learning: a possible mechanism underlying neurological disorder in myosin Va disease. Journal of Neuroscience, 31, 6067–6078.

    Article  CAS  Google Scholar 

  13. Tanaka, M., Asaoka, M., Yanagawa, Y., & Hirashima, N. (2011). Long-term gene-silencing effects of siRNA introduced by single-cell electroporation into postmitotic CNS neurons. Neurochemical Research, 36, 1482–1489.

    Article  CAS  Google Scholar 

  14. Tanaka, M. (2012). Single-cell electroporation of siRNA in primary neuronal cultures. In A. Morozov (Ed.), Controlled genetic manipulations, Neuromethods (Vol. 65, pp. 129–139). New York: Springer.

    Chapter  Google Scholar 

  15. Ohashi, R., Sakata, S., Naito, A., Hirashima, N., & Tanaka, M. (2014). Dendritic differentiation of cerebellar Purkinje cells is promoted by ryanodine receptors expressed by Purkinje and granule cells. Development Neurobiology, 74, 467–480.

    Article  CAS  Google Scholar 

  16. Boudes, M., Pieraut, S., Valmier, J., Carroll, P., & Scamps, F. (2008). Single-cell electroporation of adult sensory neurons for gene screening with RNA interference mechanism. Journal of Neuroscience Methods, 170, 204–211.

    Article  CAS  Google Scholar 

  17. Ito, M. (1984). The cerebellum and neural control. New York: Raven Press.

    Google Scholar 

  18. Altman, J., & Bayer, S. A. (1997). Development of the cerebellar system: in relation to its evolution, structure, and functions. New York: CRC Press Inc.

    Google Scholar 

  19. Tanaka, M. (2009). Dendrite formation of cerebellar Purkinje cells. Neurochemical Research, 34, 2078–2088.

    Article  CAS  Google Scholar 

  20. Ito, M. (2001). Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiological Reviews, 81, 1143–1195.

    CAS  Google Scholar 

  21. Boyden, E. S., Katoh, A., & Raymond, J. L. (2004). Cerebellum-dependent learning: the role of multiple plasticity mechanisms. Annual Review of Neuroscience, 27, 581–609.

    Article  CAS  Google Scholar 

  22. Jörntell, H., & Hansel, C. (2006). Synaptic memories upside down: bidirectional plasticity at cerebellar parallel fiber-Purkinje cell synapses. Neuron, 52, 227–238.

    Article  Google Scholar 

  23. Tanaka, M., Yanagawa, Y., Obata, K., & Marunouchi, T. (2006). Dendritic morphogenesis of cerebellar Purkinje cells through extension and retraction revealed by long-term tracking of living cells in vitro. Neuroscience, 141, 663–674.

    Article  CAS  Google Scholar 

  24. Niwa, H., Yamamura, K., & Miyazaki, J. (1991). Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene, 108, 193–200.

    Article  CAS  Google Scholar 

  25. Dhanoya, A., Chain, B. M., & Keshavarz-Moore, E. (2011). The impact of DNA topology on polyplex uptake and transfection efficiency in mammalian cells. Journal of Biotechnology, 155, 377–386.

    Article  CAS  Google Scholar 

  26. Robertson, R. M., Laib, S., & Smith, D. E. (2006). Diffusion of isolated DNA molecules: Dependence on length and topology. Proceedings of the National Academy of Sciences of the United States of America, 103, 7310–7314.

    CAS  Google Scholar 

  27. Remaut, K., Sanders, N. N., Fayazpour, F., Demeester, J., & De Smedt, S. C. (2006). Influence of plasmid DNA topology on the transfection properties of DATAP/DOPE lipoplexes. Journal of Controlled Release, 115, 335–343.

    Article  CAS  Google Scholar 

  28. Dhanoya, A., Chain, B. M., & Keshavarz-Moore, E. (2012). Role of DNA topology of polyplex molecules by dendritic cells. Vaccine, 30, 1675–1681.

    Article  CAS  Google Scholar 

  29. Xie, T.-D., & Tsong, T. Y. (1993). Study of mechanisms of electric field-induced DNA transfection. V. Effects of DNA topology on surface binding, cell uptake, expression, and integration into host chromosomes of DNA in the mammalian cell. Biophysical Journal, 65, 1684–1689.

    Article  CAS  Google Scholar 

  30. Cherng, J.-Y., Schuurmans-Nieuwenbroek, N. M. E., Jiskoot, W., Talsma, H., Zuidam, N. J., Hennink, W. E., et al. (1999). Effect of DNA topology on the transfection efficiency of poly((2-dimethylamino)ethyl methacrylate)-plasmid complexes. Journal of Controlled Release, 60, 343–353.

    Article  CAS  Google Scholar 

  31. Hsu, C. Y. M., & Uludag, H. (2008). Effects of size and topology of DNA molecules on intracellular delivery with non-viral gene carriers. BMC Biotechnology, 8, 23.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jun-ichi Miyazaki (Osaka University, Osaka, Japan) for providing the CAG promoter and Dr. Satoshi Tadokoro (Nagoya City University, Nagoya, Japan) for his valuable comment. This study was supported in part by grants in aid for research from JSPS (KAKENHI 22500312, 25430040) and Nagoya City University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiko Tanaka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishikawa, S., Hirashima, N. & Tanaka, M. Optimization of Single-Cell Electroporation Protocol for Forced Gene Expression in Primary Neuronal Cultures. Mol Biotechnol 56, 824–832 (2014). https://doi.org/10.1007/s12033-014-9761-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-014-9761-1

Keywords

Navigation