Skip to main content

Advertisement

Log in

Retransformation of Marker-Free Potato for Enhanced Resistance Against Fungal Pathogens by Pyramiding Chitinase and Wasabi Defensin Genes

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Multi-auto-transformation vector system has been one of the strategies to produce marker-free transgenic plants without using selective chemicals and plant growth regulators and thus facilitating transgene stacking. In the study reported here, retransformation was carried out in marker-free transgenic potato CV. May Queen containing ChiC gene (isolated from Streptomyces griseus strain HUT 6037) with wasabi defensin (WD) gene (isolated from Wasabia japonica) to pyramid the two disease resistant genes. Molecular analyses of the developed shoots confirmed the existence of both the genes of interest (ChiC and WD) in transgenic plants. Co-expression of the genes was confirmed by RT-PCR, northern blot, and western blot analyses. Disease resistance assay of in vitro plants showed that the transgenic lines co-expressing both the ChiC and WD genes had higher resistance against the fungal pathogens, Fusarium oxysporum (Fusarium wilt) and Alternaria solani (early blight) compared to the non-transformed control and the transgenic lines expressing either of the ChiC or WD genes. The disease resistance potential of the transgenic plants could be increased by transgene stacking or multiple transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Collinge, D. B., Kragh, K. M., Mikkelsen, J. D., Nielsen, K. K., Rasmussen, U., & Vad, K. (1993). Plant chitinases. The Plant Journal, 3, 31–40.

    Article  CAS  Google Scholar 

  2. Graham, L. S., & Sticklen, M. B. (1993). Plant chitinases. Canadian Journal of Botany, 72, 1057–1083.

    Article  Google Scholar 

  3. Broglie, K., Chet, I., Holliday, M., Cressman, R., Biddle, P., Knowlton, S., et al. (1991). Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science, 254, 1194–1197.

    Article  CAS  Google Scholar 

  4. Punja, Z. K., & Raharjo, S. H. T. (1996). Response of transgenic cucumber and carrot plants expressing different chitinase enzymes to inoculation with pathogens. Plant Diseases, 80, 999–1005.

    Article  CAS  Google Scholar 

  5. Khan, R. S., Sjahril, R., Nakamura, I., & Mii, M. (2008). Production of transgenic potato exhibiting enhanced resistance to fungal infection and herbicide applications. Plant Biotechnology Reports, 2, 13–20.

    Article  Google Scholar 

  6. Khan, R. S., Ntui, V. O., Chin, D. P., Nakamura, I., & Mii, M. (2011). Production of marker-free disease-resistant potato using isopentenyl transferase gene as a positive selection marker. Plant Cell Reports, 30, 587–597.

    Article  CAS  Google Scholar 

  7. Pedras, M. S. C., Sorensen, J. I., Okanga, F. I., & Zaharia, I. (1999). Wasalexins A and B, new phytoalexins from wasabi: isolation and synthesis, and antifungal activity. Medical and Chemical Letters, 9, 3015–3020.

    Article  CAS  Google Scholar 

  8. Saitoh, H., Kiba, A., Nishihara, M., Yamamura, S., Suzuki, K., & Terauchi, R. (2001). Production of antimicrobial defensin in Nicotiana benthamiana with a potato virus X vector. Molecular Plant-Microbe Interactions, 14, 111–115.

    Article  CAS  Google Scholar 

  9. Kanzaki, H., Nirasawa, S., Saitoh, H., et al. (2002). Over expression of the wasabi defensin gene confers enhanced resistance to blast fungus (Magnaporthe grisea) in transgenic rice. Theoretical and Applied Genetics, 105, 809–814.

    Article  CAS  Google Scholar 

  10. Khan, R. S., Nishihara, M., Yamamura, S., Nakamura, I., & Mii, M. (2006). Transgenic potatoes expressing wasabi defensin peptide confer partial resistance to gray mold (Botrytis cinerea). Plant Biotechnology, 23, 179–183.

    Article  Google Scholar 

  11. Khan, R. S., Nakamura, I., & Mii, M. (2011). Development of disease-resistant marker-free tomato by R/RS site-specific recombination. Plant Cell Reports, 30, 1041–1053.

    Article  CAS  Google Scholar 

  12. Zhang, S., Song, W. Y., Chen, L., Ruan, D., Taylor, N., Ronald, P. C., et al. (1998). Transgenic elite indica rice varieties, resistant to Xanthomonas oryzae pv. oryzae. Molecular Breeding, 4, 551–558.

    Article  CAS  Google Scholar 

  13. Mew, T. W., Vera Cruz, C. M., & Medalla, E. S. (1992). Changes in the race frequency of Xanthomonas oryzae pv. oryzae in response to the planting of rice cultivars in the Philippines. Plant Diseases, 76, 1029–1032.

    Article  Google Scholar 

  14. Huang, N., Angeles, E. R., Domingo, J., Magpantay, G., Singh, S., Zhang, G., et al. (1997). Pyramiding of bacterial blight resistance genes in rice: marker assisted selection using RFLP and PCR. Theoretical and Applied Genetics, 95, 313–320.

    Article  CAS  Google Scholar 

  15. Velazhahan, R., Chen-Cole, K., Anuratha, C. S., & Muthukrishnan, S. (1998). Induction of thaumatin-like proteins (TLPs) in Rhizoctonia solani infected rice and characterization of two new cDNA clones. Physiologia Plantarum, 102, 21–28.

    Article  CAS  Google Scholar 

  16. Takakura, Y., Ito, T., Saito, H., Inoue, T., Komari, T., & Kuwata, S. (2000). Flower predominant expression of a gene encoding a novel class I chitinase in rice (Oryza sativa L.). Plant Molecular Biology, 42, 883–897.

    Article  CAS  Google Scholar 

  17. Terras, F. R. G., Eggernont, K., Kovaleva, V., et al. (1995). Small cysteinerich antifungal proteins from radish: their role in host defense. The Plant Cell, 7, 573–588.

    Article  CAS  Google Scholar 

  18. Christo, P. (1997). Rice transformation: bombardment. Plant Molecular Biology, 35, 197–203.

    Article  Google Scholar 

  19. Chen, L., Marmey, P., Taylor, N. J., Brizard, J. P., Espinoza, C., Cruz, P., et al. (1998). Expression and inheritance of multiple transgenes in rice plants. Nature Biotechnology, 16, 1060–1064.

    Article  CAS  Google Scholar 

  20. Kim, J. K., Jang, I. C., Wu, R., Zuo, W. N., Boston, R. S., Lee, Y. H., et al. (2003). Coexpression of a modified maize ribosome-inactivating protein and a rice basic chitinase gene in transgenic rice plants confers enhanced resistance to sheath blight. Transgenic Research, 12, 475–484.

    Article  CAS  Google Scholar 

  21. Wally, O., Jayaraj, J., & Punja, Z. (2009). Comparative resistance to foliar fungal pathogens in transgenic carrot plants expressing genes encoding for chitinase, β-1,3-glucanase and peroxidise. European Journal of Plant Pathology, 123, 331–342.

    Article  CAS  Google Scholar 

  22. Jha, S., & Chattoo, B. B. (2009). Transgene stacking and coordinated expression of plant defensins confer fungal resistance in rice. Rice, 2, 143–154.

    Article  Google Scholar 

  23. Mehrotra, M., Singh, A. K., Sanyal, I., Altosaar, I., & Amla, D. V. (2011). Pyramiding of modified cry1Ab and cry1Ac genes of Bacillus thuringiensis in transgenic chickpea (Cicer arietinum L.) for improved resistance to pod borer insect Helicoverpa armigera. Euphytica, 182, 87–102.

    Article  CAS  Google Scholar 

  24. Liu, Z. W., Li, H. P., Cheng, W., Yang, P., Zhang, J. B., Gong, A. D., et al. (2012). Enhanced overall resistance to Fusarium seedling blight and Fusarium head blight in transgenic wheat by co-expression of anti-fungal peptides. European Journal of Plant Pathology, 134, 721–732.

    Article  CAS  Google Scholar 

  25. He, C., He, Y., Liu, Q., Liu, T., Liu, C., Wang, L., et al. (2013). Co-expression of genes ApGSMT2 and ApDMT2 for glycinebetaine synthesis in maize enhances the drought tolerance of plants. Molecular Breeding, 31, 559–573.

    Article  CAS  Google Scholar 

  26. Bezirganoglu, I., Hwang, S. Y., Fang, T. J., & Shaw, J. F. (2013). Transgenic lines of melon Cucumis melo L. var. makuwa cv. ‘Silver Light’) expressing antifungal protein and chitinase genes exhibit enhanced resistance to fungal pathogens. Plant Cell, Tissue and Organ Culture, 112, 227–237.

    Article  CAS  Google Scholar 

  27. Ntui, V. O., Azadi, P., Thirukkumaran, G., Khan, R. S., Chin, D. P., Nakamura, I., et al. (2011). Increased resistance to fusarium wilt in transgenic tobacco lines co-expressing chitinase and wasabi defensin genes. Plant Pathology, 60, 221–231.

    Article  CAS  Google Scholar 

  28. Ebinuma, H., Sugita, K., Matsunaga, E., & Yamakado, M. (1997). Selection of marker-free transgenic plants using the isopentenyl transferase gene as a selectable marker. Proceedings of National Academy of Sciences USA, 99, 2117–2121.

    Article  Google Scholar 

  29. Khan, R. S., Nakamura, I., & Mii, M. (2010). Production and selection of marker-free transgenic plants of Petunia hybrida using site-specific recombination. Biologia Plantarum, 54, 265–271.

    Article  CAS  Google Scholar 

  30. Sugita, K., Matsunaga, E., Kasahara, T., & Ebinuma, H. (2000). Transgene stacking in plants in the absence of sexual crossing. Molecular Breeding, 6, 529–536.

    Article  CAS  Google Scholar 

  31. Khan, R. S., Chin, D. P., Nakamura, I., & Mii, M. (2006). Production of marker-free Nierembergia caerulea using MAT vector system. Plant Cell Reports, 25, 914–919.

    Article  CAS  Google Scholar 

  32. Araki, H., Jearnpipatkula, A., Tatsumi, H., Sakurai, T., Ushino, K., Muta, T., et al. (1987). Molecular and functional organization of yeast plasmid pSR1. Journal of Molecular Biology, 182, 191–203.

    Article  Google Scholar 

  33. Smigocki, A. C. (1991). Cytokinin content and tissue distribution in plants transformed by a reconstructed isopentenyl transferase gene. Plant Molecular Biology, 16, 105–115.

    Article  CAS  Google Scholar 

  34. Hewelt, A., Prinsen, E., Schell, J., Van Onckelen, H., & Schmuülling, T. (1994). Promoter tagging with a promoterless ipt gene leads to cytokinin-induced phenotypic variability in transgenic tobacco plants: implications of gene dosage effects. Plant Journal, 6, 879–891.

    Article  CAS  Google Scholar 

  35. Walter, R. S., Rosemary, L., Gary, D. F., & Weingartner, D. P. (2001). Compendium of potato diseases (APS compendium of plant disease series). St Paul: American Phytopathological Society.

    Google Scholar 

  36. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497.

    Article  CAS  Google Scholar 

  37. Rogers, O. S., & Bendich, J. A. (1988). Extraction of DNA from plant tissues. In S. B. Gelvin, R. A. Schiliperoort, & D. P. S. Verma (Eds.), Plant Molecular Biology Manual (Vol. A6, pp. 1–10). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  38. Sambrook, J., & Russell, D. W. (2001). Molecular cloning. A laboratory manual. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  39. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  40. Broekaert, W. F., Cammue, B. P. A., De Bolle, M. F. C., Thevissen, K., de Samblanx, G. W., & Osborn, R. W. (1997). Antimicrobial peptides from plants. Critical Review of Plant Science, 16, 297–323.

    Article  CAS  Google Scholar 

  41. Ntui, V. O., Thirukkumaran, G., Azadi, P., Khan, R. S., Nakamura, I., & Mii, M. (2010). Stable integration and expression of wasabi defensin gene in ‘‘Egusi’’ melon (Colocynthis citrullus L.) confers resistance to Fusarium wilt and Alternaria leaf spot. Plant Cell Reports, 29, 943–954.

    Article  CAS  Google Scholar 

  42. Chhikara, S., Chaudhury, D., Dhankher, O. P., & Jaiwal, P. K. (2012). Combined expression of a barley class II chitinase and type I ribosome inactivating protein in transgenic Brassica juncea provides protection against Alternaria brassicae. Plant Cell, Tissue and Organ Culture, 108, 83–89.

    Article  CAS  Google Scholar 

  43. Gao, A. G., Hakimi, S. M., Mittanck, C. A., et al. (2000). Fungal pathogen protection in potato by expression of a plant defensin peptide. Nature Biotechnology, 18, 1307–1310.

    Article  CAS  Google Scholar 

  44. Leah, R., Tommerrup, H., Svendson, I., & Mundy, J. (1991). Biochemical and molecular characterization of three barley seed proteins with anti-fungal properties. Journal of Biological Chemistry, 266, 1564–1573.

    CAS  Google Scholar 

  45. Jongedijk, E., Tigelaar, H., Van Roekel, J. S. C., Bres-Vloemans, S. A., Dekker, I., Van den Elzen, P. J. M., et al. (1995). Synergistic activity of chitinases and b-1,3-glucanases enhances fungal resistance in transgenic tomato plants. Euphytica, 85, 173–180.

    Article  CAS  Google Scholar 

  46. Chen, S. C., Liu, A. R., Wang, F. H., & Ahammed, G. J. (2009). Combined overexpression of chitinase and defensin genes in transgenic tomato enhances resistance to Botrytis cinerea. African Journal of Biotechnology, 8, 5182–5188.

    CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to Pulp and Paper Research group, Nippon Paper Industries, Tokyo, who kindly provided the MAT vector constructs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raham Sher Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, R.S., Darwish, N.A., Khattak, B. et al. Retransformation of Marker-Free Potato for Enhanced Resistance Against Fungal Pathogens by Pyramiding Chitinase and Wasabi Defensin Genes. Mol Biotechnol 56, 814–823 (2014). https://doi.org/10.1007/s12033-014-9760-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-014-9760-2

Keywords

Navigation