Skip to main content
Log in

Rapid Bovine and Caprine species Identification in Ruminant Feeds by Duplex Real-Time PCR Melting Curve Analysis Using EvaGreen Fluorescence Dye

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

A duplex real-time PCR assay with melting curve analysis, using the EvaGreen fluorescence dye, was developed for rapid and reliable identification of bovine and caprine in ruminant feeds. The method merges the use of bovine (Bos taurus) and caprine (Capra hircus) specific primers that amplify small fragments (bovine 96 bp and caprine 142 bp) of the mitochondrial 16S rRNA and 12S rRNA genes, respectively. DNA was isolated from heat-treated meats (133 °C/3 bar for 20 min) mixtures of bovine and caprine and was used to optimize the assay. Gene products of caprine and bovine produced two distinct melting peaks simultaneously at 82 and 86.8 °C, respectively. Duplex analysis of the reference samples showed that the detection limit of the assay was 0.003 % for bovine and 0.005 % for caprine species. The aim of this study was to develop a duplex real-time PCR assay followed by a melt curve step for sensitive, rapid, specific, and cost-effective detection of bovine and caprine species based on the amplicon melting peak in ruminant feeds to prevent Transmissible Spongiform Encephalopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Biljan, I., llc, G., Giachin, G., Raspadori, A., Zhukov, I., Plavec, J., et al. (2011). Toward the molecular basis of inherited prion diseases: NMR structure of the human prion protein with V210I mutation. Journal of Molecular Biology, 412, 660–673.

    Article  CAS  Google Scholar 

  2. Salman, M., Silano, V., Heim, D., & Kreysa, J. (2012). Geographical BSE risk assessment and its impact on disease detection and dissemination. Preventive Veterinary Medicine, 105, 255–264.

    Article  Google Scholar 

  3. Hueston, W. D. (2013). BSE and variant CJD: Emerging science, public pressure and the vagaries of policy-making BSE and variant CJD: Emerging science, public pressure and the vagaries of policy-making. Preventive Veterinary Medicine, 109, 179–184.

    Article  Google Scholar 

  4. Tongue, S. C., Pfeiffer, D. U., Shearna, P. D., & Wilesmith, J. W. (2009). PrP genotype: A flock-level risk factor for scrapie? Preventive Veterinary Medicine, 92, 309–323.

    Article  Google Scholar 

  5. McIntyre, K. M., Vilas, V. J. D. R., & Gubbins, S. (2011). Demographic characteristics of scrapie-affected holdings identified by active and passive surveillance schemes in Great Britain: 2002–2005. Veterinary Journal, 187, 207–211.

    Article  Google Scholar 

  6. (1994) Commission Decision 1994/381/EC of 27 June 1994. Official Journal of the European Union L, 172, 23–24.

  7. Commission, E. (2002). Regulation 1774/2002 of 10 October 2002. Official Journal of the European Union L, 273(2002), 1–5.

    Google Scholar 

  8. (2013) Commission Regulation (EC) no. 56/2013 of 1st June 2013. Official Journal of the European Union L, 21, 3–16.

  9. Arslan, A., Irfan-Ilhak, O., & Calicioglu, M. (2006). Effect of method of cooking on identification of heat processed beef using polymerase chain reaction (PCR) technique. Meat Science, 72, 326–330.

    Article  CAS  Google Scholar 

  10. Espiñeira, M., Herrero, B., Vieites, J. M., & Santaclara, F. J. (2010). Validation of end-point and real-time PCR methods for the rapid detection of soy allergen in processed products. Food Additives & Contaminants, 27(4), 426–432.

    Article  Google Scholar 

  11. Martin, I., Garcia, T., Fajardo, V., Lo´pez-Calleja, I., Herna´ndez, P. E., Gonza´lez, I., et al. (2007). Species-specific PCR for the identification of ruminant species in feedstuffs. Meat Science, 75, 120–127.

    Article  CAS  Google Scholar 

  12. Chen, S. Y., Liu, Y. P., & Yao, Y. G. (2010). Species authentication of commercial beef jerky based on PCR-RFLP analysis of the mitochondrial 12S rRNA gene. Journal of Genetics and Genomics, 37, 763–769.

    Article  CAS  Google Scholar 

  13. Rojas, M., González, I., Cruz, S. D. L., Hernández, P. E., García, T., & Martín, R. (2011). Application of species-specific polymerase chain reaction assays to verify the labeling of quail (Coturnix coturnix), pheasant (Phasianus colchicus) and ostrich (Struthio camelus) in petfoods. Animal Feed Science and Technology, 169, 128–133.

    Article  CAS  Google Scholar 

  14. Wisniewska, M. N., Krzyscin, P., & Piestrzynska-Kajtoch, A. (2013). The species identification of bovine, porcine, ovine and chicken components in animal meals, feeds and their ingredients, based on COX I analysis and ribosomal DNA sequences. Food Control, 34, 69–78.

    Article  Google Scholar 

  15. Safdar, M. (2013). Multiplex analysis of animal and plant species origin in feedstuffs and foodstuffs by modern PCR techniques: Qualitative PCR and real time PCR. MS, Thesis, Fatih University, Istanbul, Turkey.

  16. Safdar, M., Abasıyanık, M. F. (2013). Development of triplex PCR assays for sheep, bovine and fish species identification in animal meals. Tubitak Congress on Bio & Nano Technology, October 1–3, pp. 60.

  17. Martín, I., García, T., Fajardo, V., Rojas, M., Pegels, N., Hernández, P. E., et al. (2009). SYBR-green real-time PCR approach for the detection and quantification of pig DNA in feedstuffs. Meat Science, 82, 252–259.

    Article  Google Scholar 

  18. Benedetto, M. C., & Abete, S. (2011). Squadrone towards a quantitative application of real-time PCR technique for fish DNA detection in feedstuffs. Food Chemistry, 126, 1436–1442.

    Article  CAS  Google Scholar 

  19. Pegels, N., González, I., García, T., & Martín, R. (2014). Avian-specific real-time PCR assay for authenticity control in farm animal feeds and pet foods. Food Chemistry, 142, 39–47.

    Article  CAS  Google Scholar 

  20. Pegels, N., González, I., Martín, I., Rojas, M., García, T., & Martín, R. (2011). Applicability assessment of a real-time PCR assay for the specific detection of bovine, ovine and caprine material in feedstuffs. Food Control, 22, 1189–1196.

    Article  CAS  Google Scholar 

  21. Pegels, N., González, I., Fernández, S., García, T., & Martín, R. (2012). Sensitive detection of porcine DNA in processed animal proteins using a TaqMan real-time PCR assay. Food additives & contaminants Part A, Chemistry, analysis, control, exposure & risk assessment, 29, 1402–1412.

    Article  CAS  Google Scholar 

  22. Pegels, N., González, I., Fernández, S., García, T., & Martín, R. (2012). Evaluation of a TaqMan real-time PCR assay for detection of chicken, turkey, duck, and goose material in highly processed industrial feed samples. Poultry Science, 91, 1709–1719.

    Article  CAS  Google Scholar 

  23. Tyagi, S., Bratu, D. P., & Kramer, F. R. (1998). Multicolor molecular beacons for allele discrimination. Nature Biotechnology, 16, 49–53.

    Article  CAS  Google Scholar 

  24. Paz, J. L. L., Esteve, T., & Pla, M. (2007). Comparison of real-time PCR detection chemistries and cycling modes using Mon810 event-specific assays as model. Journal of Agriculture and Food Chemistry, 55, 4312–4318.

    Article  Google Scholar 

  25. Hadjinicolaou, A. V., Demetriou, V. L., & Emmanue, M. A. (2009). Molecular beacon-based real-time PCR detection of primary isolates of Salmonella Typhimurium and Salmonella Enteritidis in environmental and clinical samples. BMC Microbiology, 2009(9), 97. doi:10.1186/1471-2180-9-97.

    Article  Google Scholar 

  26. Arteaga, S. H., & Ruben, L.-R. (2008). Quantitation of human papilloma virus type 16 E6 oncogene sequences by realtime or quantitative PCR with EvaGreen. Analytical Biochemistry, 380, 131–133.

    Article  Google Scholar 

  27. Khan, S. A., Sung, K., & Nawaz, M. S. (2011). Detection of aacA-aphD, qacEdelta1, marA, floR, and tetA genes from multidrug-resistant bacteria: Comparative analysis of real-time multiplex PCR assays using EvaGreen and SYBR Green I dyes. Molecular and Cellular Probes, 25, 78–86.

    Article  CAS  Google Scholar 

  28. Cheng, J., Jiang, Y., Rao, P., Wu, H., Dong, Q., Wu, Z., et al. (2013). Development of a single-tube multiplex real-time PCR for detection and identification of five pathogenic targets by using melting-curve analysis with EvaGreen. Archives of Virology, 158, 379–386.

    Article  CAS  Google Scholar 

  29. Fajardo, V., Gonza´lez, I., Martı´n, I., Rojas, M., Herna´ndez, P. E., Garcı´a, T., et al. (2008). Real-time PCR for detection and quantification of red deer (Cervus elaphus), fallow deer (Dama dama), and roe deer (Capreolus capreolus) in meat mixtures. Meat Science, 79, 289–298.

    Article  CAS  Google Scholar 

  30. Giglio, S., Monis, P. T., & Saint, C. P. (2003). Demonstration of preferential binding of SYBR Green I to specific DNA fragments in real-time multiplex PCR. Nucleic Acids Research, 31, 136–141.

    Article  Google Scholar 

  31. Eischeid, A. C. (2011). SYTO dyes and EvaGreen outperform SYBR Green in real-time PCR. Eischeid BMC, Research Notes, 4, 263–268.

    Article  Google Scholar 

  32. Li, Y. D., Chu, Z. Z., Liu, X. G., Jing, H. C., Liu, Y. G., & Hao, D. Y. (2010). A cost-effective high-resolution melting approach using the Eva-Green dye for DNA polymorphism detection and genotyping in Plants. Journal of Integrative Plant Biology, 52, 1036–1042.

    Article  CAS  Google Scholar 

  33. Mao, F., Leung, W. Y., & Xin, X. (2007). Characterization of EvaGreen and the implication of its physicochemical properties for qPCR applications. BMC Biotechnology, 7, 76–92.

    Article  Google Scholar 

  34. Varga, A., & James, D. (2006). Real-time RT-PCR and SYBR Green I melting curve analysis for the identification of Plum pox virus strains C, EA, and W: effect of amplicon size, melt rate, and dye translocation. Journal of Virology Methods, 132, 146–153.

    Article  CAS  Google Scholar 

  35. Monti, M., Martini, M., & Tedeschi, R. (2013). EvaGreen real-time PCR protocol for specific ‘Candidatus Phytoplasma mali’ detection and quantification in insects. Molecular and Cellular Probes, 27, 129–136.

    Article  CAS  Google Scholar 

  36. Pafundo, S., Gulli, M., & Marmiroli, N. (2009). SYBR Green real-time PCR to detect almond in traces in processed food. Food Chemistry, 116, 811–815.

    Article  CAS  Google Scholar 

  37. Safdar, M., & Abasıyanık, M. F. (2013). Simultaneous identification of pork and poultry origins in pet foods by a quick multiplex real-time PCR assay using EvaGreen florescence dye. Applied Biochemistry and Biotechnology, 171, 1855–1864.

    Article  CAS  Google Scholar 

  38. Safdar, M., & Abasıyanık, M. F. (2013). Development of fast multiplex real-time PCR assays based on EvaGreen florescence dye for identification of beef and soybean origins in processed sausages. Food Research International, 54, 1652–1656.

    Article  CAS  Google Scholar 

  39. Prado, M., Berben, G., Fumière, O., van Duijn, G., Mensinga-Kruize, J., Reaney, S., et al. (2007). Detection of ruminant meat and bone meals in animal feed by real-time polymerase chain reaction: Result of an interlaboratory study. Journal of Agricultural and Food Chemistry, 55(18), 7495–7501.

    Article  CAS  Google Scholar 

  40. Koppel, R., Zimmerli, F., & Breitenmoser, A. (2009). Heptaplex real-time PCR for the identification and quantification of DNA from beef, pork, chicken, turkey, horse meat, sheep (mutton) and goat. European Food Research and Technology, 230, 125–133.

    Article  Google Scholar 

  41. Rodríguez, M. A., García, T., González, I., Asensio, L., Hernández, P., & Martín, R. (2004). PCR identification of beef, sheep, goat, and pork in raw and heat-treated meat mixtures. Journal of Food Protection, 67, 172–177.

    Google Scholar 

  42. Walker, J. A., Hughes, D. A., Anders, B. A., Shewale, J., & Sinha, S. K. (2004). Quantitative intra-short interspersed element PCR for species-specific DNA identification. Analytical Biochemistry, 316, 259–269.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Office of Scientific Research Projects at Fatih University that has supported this study with the project Grant No. P50091102_G (1884), and the Department of Genetics and bioengineering that has provided necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Safdar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safdar, M., Junejo, Y., Arman, K. et al. Rapid Bovine and Caprine species Identification in Ruminant Feeds by Duplex Real-Time PCR Melting Curve Analysis Using EvaGreen Fluorescence Dye. Mol Biotechnol 56, 770–776 (2014). https://doi.org/10.1007/s12033-014-9756-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-014-9756-y

Keywords

Navigation