Skip to main content
Log in

Systematic Optimization of Multiplex Zymography Protocol to Detect Active Cathepsins K, L, S, and V in Healthy and Diseased Tissue: Compromise Among Limits of Detection, Reduced Time, and Resources

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Cysteine cathepsins are a family of proteases identified in cancer, atherosclerosis, osteoporosis, arthritis, and a number of other diseases. As this number continues to rise, so does the need for low cost, broad use quantitative assays to detect their activity and can be translated to the clinic in the hospital or in low resource settings. Multiplex cathepsin zymography is one such assay that detects subnanomolar levels of active cathepsins K, L, S, and V in cell or tissue preparations observed as clear bands of proteolytic activity after gelatin substrate SDS-PAGE with conditions optimal for cathepsin renaturing and activity. Densitometric analysis of the zymogram provides quantitative information from this low cost assay. After systematic modifications to optimize cathepsin zymography, we describe reduced electrophoresis time from 2 h to 10 min, incubation assay time from overnight to 4 h, and reduced minimal tissue protein necessary while maintaining sensitive detection limits; an evaluation of the pros and cons of each modification is also included. We further describe image acquisition by Smartphone camera, export to Matlab, and densitometric analysis code to quantify and report cathepsin activity, adding portability and replacing large scale, darkbox imaging equipment that could be cost prohibitive in limited resource settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chapman, H. A., Riese, R. J., & Shi, G. P. (1997). Emerging roles for cysteine proteases in human biology. Annual Review of Physiology, 59, 63–88.

    Article  CAS  Google Scholar 

  2. Sukhova, G. K., Zhang, Y., Pan, J. H., Wada, Y., Yamamoto, T., Naito, M., et al. (2003). Deficiency of cathepsin S reduces atherosclerosis in LDL receptor-deficient mice. The Journal Clinical Investigation, 111(6), 897–906.

    CAS  Google Scholar 

  3. Lecaille, F., Bromme, D., & Lalmanach, G. (2008). Biochemical properties and regulation of cathepsin K activity. Biochimie, 90(2), 208–226.

    Article  CAS  Google Scholar 

  4. Lutgens, E., Lutgens, S. P., Faber, B. C., Heeneman, S., Gijbels, M. M., de Winther, M. P., et al. (2006). Disruption of the cathepsin K gene reduces atherosclerosis progression and induces plaque fibrosis but accelerates macrophage foam cell formation. Circulation, 113(1), 98–107.

    Article  CAS  Google Scholar 

  5. Platt, M. O., Ankeny, R. F., Shi, G. P., Weiss, D., Vega, J. D., Taylor, W. R., et al. (2007). Expression of cathepsin K is regulated by shear stress in cultured endothelial cells and is increased in endothelium in human atherosclerosis. American Journal of Physiology. Heart and Circulatory Physiology, 292(3), H1479–H1486.

    Article  CAS  Google Scholar 

  6. Littlewood-Evans, A. J., Bilbe, G., Bowler, W. B., Farley, D., Wlodarski, B., Kokubo, T., et al. (1997). The osteoclast-associated protease cathepsin K is expressed in human breast carcinoma. Cancer Research, 57(23), 5386–5390.

    CAS  Google Scholar 

  7. Lafarge, J. C., Naour, N., Clement, K., & Guerre-Millo, M. (2010). Cathepsins and cystatin C in atherosclerosis and obesity. Biochimie, 92(11), 1580–1586. doi:10.1016/j.biochi.2010.04.011.

    Article  CAS  Google Scholar 

  8. Platt, M. O., Ankeny, R. F., & Jo, H. (2006). Laminar shear stress inhibits cathepsin L activity in endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 26(8), 1784–1790.

    Article  CAS  Google Scholar 

  9. Sukhova, G. K., Shi, G. P., Simon, D. I., Chapman, H. A., & Libby, P. (1998). Expression of the elastolytic cathepsins S and K in human atheroma and regulation of their production in smooth muscle cells. The Journal of Clinical Investigation, 102(3), 576–583.

    Article  CAS  Google Scholar 

  10. Shi, G. P., Sukhova, G. K., Grubb, A., Ducharme, A., Rhode, L. H., Lee, R. T., et al. (1999). Cystatin C deficiency in human atherosclerosis and aortic aneurysms. The Journal of Clinical Investigation, 104(9), 1191–1197.

    Article  CAS  Google Scholar 

  11. Hansen, L., Parker, I., Sutliff, R. L., Platt, M. O., & Gleason, R. L., Jr. (2012). Endothelial dysfunction, arterial stiffening, and intima-media thickening in large arteries from HIV-1 transgenic mice. Annals of Biomedical Engineering, 22, 22.

    Google Scholar 

  12. Pang, M., Martinez, A. F., Fernandez, I., Balkan, W., & Troen, B. R. (2007). AP-1 stimulates the cathepsin K promoter in RAW 264.7 cells. Gene, 403(1–2), 151–158.

    Article  CAS  Google Scholar 

  13. Yasuda, Y., Li, Z., Greenbaum, D., Bogyo, M., Weber, E., & Bromme, D. (2004). Cathepsin V, a novel and potent elastolytic activity expressed in activated macrophages. Journal of Biological Chemistry, 279(35), 36761–36770.

    Article  CAS  Google Scholar 

  14. Park, K. Y., Li, W. A., & Platt, M. O. (2012). Patient specific proteolytic activity of monocyte-derived macrophages and osteoclasts predicted with temporal kinase activation states during differentiation. Integrative Biology: Quantitative Biosciences from Nano to Macro, 4(12), 1459–1469.

    CAS  Google Scholar 

  15. Tournu, C., Obled, A., Roux, M. P., Deval, C., Ferrara, M., & Bechet, D. M. (1998). Glucose controls cathepsin expression in Ras-transformed fibroblasts. Archives of Biochemistry and Biophysics, 360(1), 15–24.

    Article  CAS  Google Scholar 

  16. Mohamed, M. M., & Sloane, B. F. (2006). Cysteine cathepsins: Multifunctional enzymes in cancer. Nature Reviews Cancer, 6(10), 764–775.

    Article  CAS  Google Scholar 

  17. Brubaker, K. D., Vessella, R. L., True, L. D., Thomas, R., & Corey, E. (2003). Cathepsin K mRNA and protein expression in prostate cancer progression. Journal of Bone and Mineral Research, 18(2), 222–230.

    Article  CAS  Google Scholar 

  18. Vasiljeva, O., Reinheckel, T., Peters, C., Turk, D., Turk, V., & Turk, B. (2007). Emerging roles of cysteine cathepsins in disease and their potential as drug targets. Current Pharmaceutical Design, 13(4), 387–403.

    Article  CAS  Google Scholar 

  19. Wijkmans, J., & Gossen, J. (2011). Inhibitors of cathepsin K: A patent review (2004–2010). Expert Opinion on Therapeutic Patents, 21(10), 1611–1629.

    Article  CAS  Google Scholar 

  20. Bromme, D., & Lecaille, F. (2009). Cathepsin K inhibitors for osteoporosis and potential off-target effects. Expert Opinion on Investigational Drugs, 18(5), 585–600.

    Article  Google Scholar 

  21. Palermo, C., & Joyce, J. A. (2008). Cysteine cathepsin proteases as pharmacological targets in cancer. Trends in Pharmacological Sciences, 29(1), 22–28.

    Article  CAS  Google Scholar 

  22. Blum, G., Mullins, S. R., Keren, K., Fonovic, M., Jedeszko, C., Rice, M. J., et al. (2005). Dynamic imaging of protease activity with fluorescently quenched activity-based probes. Nature Chemical Biology, 1(4), 203–209.

    Article  CAS  Google Scholar 

  23. Joyce, J. A., Baruch, A., Chehade, K., Meyer-Morse, N., Giraudo, E., Tsai, F. Y., et al. (2004). Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis. Cancer Cell, 5(5), 443–453.

    Article  CAS  Google Scholar 

  24. Li, W. A., Barry, Z. T., Cohen, J. D., Wilder, C. L., Deeds, R. J., Keegan, P. M., et al. (2010). Detection of femtomole quantities of mature cathepsin K with zymography. Analytical Biochemistry, 401(1), 91–98.

    Article  CAS  Google Scholar 

  25. Chen, B., & Platt, M. O. (2011). Multiplex zymography captures stage-specific activity profiles of cathepsins K, L, and S in human breast, lung, and cervical cancer. Journal of Translational Medicine, 9, 109.

    Article  Google Scholar 

  26. Wilder, C. L., Park, K. Y., Keegan, P. M., & Platt, M. O. (2011). Manipulating substrate and pH in zymography protocols selectively distinguishes cathepsins K, L, S, and V activity in cells and tissues. Archives of Biochemistry and Biophysics, 516(1), 52–57.

    Article  CAS  Google Scholar 

  27. Edge, S. B., & Compton, C. C. (2010). The American Joint Committee on Cancer: The 7th edition of the AJCC cancer staging manual and the future of TNM. Annals of Surgical Oncology, 17(6), 1471–1474.

    Article  Google Scholar 

  28. Keegan, P. M., Wilder, C. L., & Platt, M. O. (2012). Tumor necrosis factor alpha stimulates cathepsin K and V activity via juxtacrine monocyte-endothelial cell signaling and JNK activation. Molecular and Cellular Biochemistry, 367(1–2), 65–72. doi:10.1007/s11010-012-1320-0.

    Article  CAS  Google Scholar 

  29. Barry, Z. T., & Platt, M. O. (2012). Cathepsin S cannibalism of cathepsin K as a mechanism to reduce type I collagen degradation. Journal of Biological Chemistry, 287(33), 27723–27730. doi:10.1074/jbc.M111.332684.

    Article  CAS  Google Scholar 

  30. Gallagher, S.R. (2001). One-dimensional SDS gel electrophoresis of proteins. Current Protocols in Protein Science. doi:10.1002/0471140864.ps1001s00.

Download references

Acknowledgments

This study was funded by the Georgia Cancer Coalition (M.O.P.) and the Institutional Research and Academic Career Development Awards (IRACDA Grant Number K12 GM000680, NIH/NIGMS) (J.E.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manu O. Platt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dumas, J.E., Platt, M.O. Systematic Optimization of Multiplex Zymography Protocol to Detect Active Cathepsins K, L, S, and V in Healthy and Diseased Tissue: Compromise Among Limits of Detection, Reduced Time, and Resources. Mol Biotechnol 54, 1038–1047 (2013). https://doi.org/10.1007/s12033-013-9658-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-013-9658-4

Keywords

Navigation