Skip to main content

Advertisement

Log in

Nitrogen Starvation, Salt and Heat Stress in Coffee (Coffea arabica L.): Identification and Validation of New Genes for qPCR Normalization

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Abiotic stresses are among the most important factors that affect food production. One important step to face these environmental challenges is the transcriptional modulation. Quantitative real-time PCR is a rapid, sensitive, and reliable method for the detection of mRNAs and it has become a powerful tool to mitigate plant stress tolerance; however, suitable reference genes are required for data normalization. Reference genes for coffee plants during nitrogen starvation, salinity and heat stress have not yet been reported. We evaluated the expression stability of ten candidate reference genes using geNorm PLUS, NormFinder, and BestKeeper softwares, in plants submitted to nitrogen starvation, salt and heat stress. EF1, EF1α, GAPDH, MDH, and UBQ10 were ranked as the most stable genes in all stresses and software analyses, while RPL39 and RPII were classified as the less reliable references. For reference gene validation, the transcriptional pattern of a Coffea non-symbiotic hemoglobin (CaHb1) was analyzed using the two new recommended and the most unstable gene references for normalization. The most unstable gene may lead to incorrect interpretation of CaHb1 transcriptional analysis. Here, we recommend two new reference genes in Coffea for use in data normalization in abiotic stresses: MDH and EF1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Watson, K., & Achinelli, M. L. (2008). Context and contingency: The coffee crisis for conventional small-scale coffee farmers in Brazil. The Geographical Journal, 174(3), 223–234.

    Article  Google Scholar 

  2. Roy, S. J., Tucker, E. J., & Tester, M. (2011). Genetic analysis of abiotic stress tolerance in crops. Current Opinion in Plant Biology, 14, 232–239.

    Article  CAS  Google Scholar 

  3. Tester, M., & Langridge, P. (2010). Breeding technologies to increase crop production in a changing world. Science, 327, 818–822.

    Article  CAS  Google Scholar 

  4. Kodaira, K. S., Qin, F., Tran, L. S. P., et al. (2011). Arabidopsis C2H2 zinc-finger proteins AZF1 and AZF2 negatively regulate ABA-repressive and auxin-inducible genes under abiotic stress conditions. Plant Physiology, 157(2), 742–756.

    Article  CAS  Google Scholar 

  5. Tillett, R. L., Ergü, A., Albion, R. L., et al. (2011). Identification of tissue-specific, abiotic stress responsive gene expression patterns in wine grape (Vitis vinifera L.) based on curation and mining of large-scale EST data sets. BMC Plant Biology, 11, 86.

    Article  CAS  Google Scholar 

  6. Chen, L., Zhong, H., Kuang, J., et al. (2011). Validation of reference genes for RT-qPCR studies of gene expression in banana fruit under different experimental conditions. Planta, 234, 377–390.

    Article  CAS  Google Scholar 

  7. Guénin, S., Mauriat, M., Pelloux, J., et al. (2009). Normalization of qRT-PCR data: The necessity of adopting a systematic, experimental conditions-specific, validation of references. Journal of Experimental Botany, 60, 487–493.

    Article  Google Scholar 

  8. Artico, S., Nardeli, S. M., Brilhante, O., et al. (2010). Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data. BMC Plant Biology, 10, 49.

    Article  Google Scholar 

  9. Gu, C., Chen, S., Liu, Z., et al. (2011). Reference gene selection for quantitative real-time PCR in chrysanthemum subjected to biotic and abiotic stress. Molecular Biotechnology, 49, 192–197.

    Article  CAS  Google Scholar 

  10. Fernandez, P., Rienzo, J. A., Moschen, S., et al. (2010). Comparison of predictive methods and biological validation for qPCR reference genes in sunflower leaf senescence transcript analysis. Plant Cell Reports, 30(1), 63–74.

    Article  Google Scholar 

  11. Salmona, J., Dussert, S., Descroix, F., et al. (2008). Deciphering transcriptional networks that govern Coffea arabica seed development using combined cDNA array and real-time RT-PCR approaches. Plant Molecular Biology, 66, 105–124.

    Article  CAS  Google Scholar 

  12. Nobile, P. M., Quecini, V., Bazzo, B., et al. (2010). Transcriptional profile of genes involved in the biosynthesis of phytate and ferritin in Coffea. Journal of Agricultural and Food Chemistry, 58(6), 3479–3487.

    Article  CAS  Google Scholar 

  13. Cruz, F., Kalaoun, S., Nobile, P., et al. (2009). Evaluation of coffee reference genes for relative expression studies by quantitative real-time RT-PCR. Molecular Breeding, 23(4), 607–616.

    Article  CAS  Google Scholar 

  14. Barsalobres-Cavallari, C. F., Severino, F. E., Maluf, M. P., & Maia, I. G. (2009). Identification of suitable internal control genes for expression studies in Coffea arabica under different experimental conditions. BMC Molecular Biology, 10(1), 1.

    Article  Google Scholar 

  15. Vandesompele, J., De Preter, K., Pattyn, F., et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3, 34.

    Article  Google Scholar 

  16. Andersen, C. L., Jensen, J. L., & Orntoft, T. F. (2004). Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research, 64, 5245–5250.

    Article  CAS  Google Scholar 

  17. Pfaffl, M. W., Tichopad, A., Prgomet, C., & Neuvians, T. P. (2004). Determination of stable housekeeping genes, differentially regulated target genes, and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations. Biotechnology Letters, 26, 509–515.

    Article  CAS  Google Scholar 

  18. Clark, R. B. (1975). Characterization of phosphatase of intact maize roots. Journal of Agricultural and Food Chemistry, 23, 458–460.

    Article  CAS  Google Scholar 

  19. Dos Santos, T. B., Budzinski, I. G. F., Marur, C. J., et al. (2011). Expression of three galactinol synthase isoforms in Coffea arabica L. and accumulation of raffinose and stachyose in response to abiotic stresses. Plant Physiology and Biochemistry, 49, 441–448.

    Article  Google Scholar 

  20. Chang, S., Puryear, J., & Cairney, J. (1993). A simple and efficient method for isolating RNA from pine trees. Plant Molecular Biology Reporter, 11, 113–116.

    Article  CAS  Google Scholar 

  21. Bottcher, A., Nobile, P. M., Martins, P. F., Conte, F. F., Azevedo, R. A., & Mazzafera, P. (2011). A role for ferritin in the antioxidant system in coffee cell cultures. BioMetals, 24(2), 225–237.

    Article  CAS  Google Scholar 

  22. Simkin, A. J., Qian, T. Z., Caillet, V., Michoux, F., Ben Amor, M., Lin, C. W., et al. (2006). Oleosin gene family of Coffea canephora: Quantitative expression analysis of five oleosin genes in developing and germinating coffee grain. Journal of Plant Physiology, 163, 691–708.

    Article  CAS  Google Scholar 

  23. Mondego, J. M. C., Vidal, R. O., Carazzolle, M. F., et al. (2011). An EST-based analysis identifies new genes and reveals distinctive gene expression features of Coffea arabica and Coffea canephora. BMC Plant Biology, 11, 30.

    Article  CAS  Google Scholar 

  24. Carvalho, K., Campos, M. K. F., Pereira, L. F. P., & Vieira, L. G. E. (2010). Reference gene selection for real-time quantitative polymerase chain reaction normalization in “Swingle” citrumelo under drought stress. Analytical Biochemistry, 402, 197–199.

    Article  CAS  Google Scholar 

  25. Bustin, S. A., Benes, V., Garson, J. A., et al. (2009). The MIQE guidelines: minimum information for publication of quantitative real time PCR experiments. Clinical Chemistry, 55, 611–622.

    Article  CAS  Google Scholar 

  26. Privat, I., Bardi, A., Gomez, A. B., Severac, D., Dantec, C., Fuentes, I., et al. (2011). The ‘PUCE CAFE’ project: The first 15 K coffee microarray, a new tool for discovering candidate genes correlated to agronomic and quality traits. BMC Genomics, 12, 5.

    Article  CAS  Google Scholar 

  27. Dordas, C., Hasinoff, B. B., Rivoal, J., & Hill, R. D. (2004). Class-1 hemoglobins, nitrate and NO levels in anoxic maize cell-suspension cultures. Planta, 219, 66–72.

    Article  CAS  Google Scholar 

  28. Livak, J. K., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods, 25, 402–408.

    Article  CAS  Google Scholar 

  29. Oliveira, R. R., Chalfun-Junior, A., Paiva, L. V., & Andrade, A. C. (2010). In silico and quantitative analyses of MADS-Box genes in Coffea arabica. Plant Molecular Biology Reporter, 28, 460–472.

    Article  Google Scholar 

  30. Lin, Y. L., & Lai, Z. X. (2010). Reference gene selection for qPCR analysis during somatic embryogenesis in longan tree. Plant Science, 178, 359–365.

    Article  CAS  Google Scholar 

  31. Wan, H., Zhao, Z., Qian, C., et al. (2010). Selection of appropriate reference genes for gene expression studies by quantitative real-time polymerase chain reaction in cucumber. Analytical Biochemistry, 399, 257–261.

    Article  CAS  Google Scholar 

  32. Zhong, H. Y., Chen, J. W., Li, C. Q., et al. (2011). Selection of reliable reference genes for expression studies by reverse transcription quantitative real-time PCR in litchi under different experimental conditions. Plant Cell Reports, 30, 641–653.

    Article  CAS  Google Scholar 

  33. Lee, J. M., Roche, J. R., Donaghy, D. J., et al. (2010). Validation of reference genes for quantitative RT-PCR studies of gene expression in perennial ryegrass (Lolium perenne L.). BMC Molecular Biology, 11, 8.

    Article  Google Scholar 

  34. Silveira, E. D., Alves-Ferreira, M., Guimaraes, L. A., et al. (2009). Selection of reference genes for quantitative realtime PCR expression studies in the apomictic and sexual grass Brachiaria brizantha. BMC Plant Biology, 9, 84.

    Article  Google Scholar 

  35. Gutierrez, L., Mauriat, M., Guénin, S., et al. (2008). The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnology Journal, 6, 609–618.

    Article  CAS  Google Scholar 

  36. Singh, R., & Green, M. R. (1993). Sequence-specific binding of transfer RNA by glyceraldehyde-3-phosphate dehydrogenase. Science, 259(5093), 365–368.

    Article  CAS  Google Scholar 

  37. Lovdal, T., & Lillo, C. (2009). Reference gene selection for quantitative real-time PCR normalization in tomato subjected to nitrogen, cold, and light stress. Analytical Biochemistry, 387, 238–242.

    Article  CAS  Google Scholar 

  38. Migocka, M., & Papierniak, A. (2011). Identification of suitable reference genes for studying gene expression in cucumber plants subjected to abiotic stress and growth regulators. Molecular Breeding, 28, 343–357.

    Article  Google Scholar 

  39. Jian, B., Liu, B., Bi, Y., et al. (2008). Validation of internal control for gene expression study in soybean by quantitative real-time PCR. BMC Molecular Biology, 9, 59.

    Article  Google Scholar 

  40. Exposito-Rodriguez, M., Borges, A. A., Borges-Perez, A., & Perez, J. A. (2008). Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biology, 8, 131.

    Article  Google Scholar 

  41. Tong, Z., Gao, Z., Wang, F., et al. (2009). Selection of reliable reference genes for gene expression studies in peach using real-time PCR. BMC Molecular Biology, 10, 71.

    Article  Google Scholar 

  42. Reid, K. E., Olsson, N., Schlosser, J., et al. (2006). An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biology, 6, 27–37.

    Article  Google Scholar 

  43. Paolacci, A., Tanzarella, O., Porceddu, E., & Ciaffi, M. (2009). Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Molecular Biology, 10(1), 11.

    Article  Google Scholar 

  44. Die, J. V., Román, B., Nadal, S., & González-Verdejo, C. I. (2010). Evaluation of candidate reference genes for expression studies in Pisum sativum under different experimental conditions. Planta, 232, 145–153.

    Article  CAS  Google Scholar 

  45. Hong, S. Y., Seo, P. J., Yang, M. S., et al. (2008). Exploring valid reference genes for gene expression studies in Brachypodium distachyon by real-time PCR. BMC Plant Biology, 8, 112.

    Article  Google Scholar 

  46. Czechowski, T., Stitt, M., Altmann, T., et al. (2005). Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiology, 139(1), 5–17.

    Article  CAS  Google Scholar 

  47. Iskandar, H. M., Simpson, R. S., Casu, R. E., et al. (2004). Comparison of reference genes for quantitative real time-PCR analysis of gene expression in sugarcane. Plant Molecular Biology Reporter, 22, 325–337.

    Article  CAS  Google Scholar 

  48. Jain, M., Nijhawan, A., Tyagi, A. K., & Khurana, J. P. (2006). Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochemical and Biophysical Research Communications, 345, 646–651.

    Article  CAS  Google Scholar 

  49. Carelli, M. L. C., Queiroz-Voltan, R. B., Fahl, J. I., & Trivelin, P. C. O. (2003). Leaf anatomy and carbon isotope composition in Coffea species related to photosynthetic pathway. Brazilian Journal of Plant Physiology, 15(1), 19–24.

    Article  CAS  Google Scholar 

  50. Freschi, L., Rodrigues, M. A., Domingues, D. S., et al. (2010). Nitric oxide mediates the hormonal control of Crassulacean acid metabolism expression in young pineapple plants. Plant Physiology, 152(4), 1971–1985.

    Article  CAS  Google Scholar 

  51. Simkin, A. J., Moreau, H., Kuntz, M., et al. (2008). An investigation of carotenoid biosynthesis in Coffea canephora and Coffea arabica. Journal of Plant Physiology, 165, 1087–1106.

    Article  CAS  Google Scholar 

  52. Pré, M., Caillet, V., Sobilo, J., & McCarthy, J. (2008). Characterization and expression analysis of genes directing galactomannan synthesis in coffee. Annals of Botany, 102, 207–220.

    Article  Google Scholar 

  53. Trevaskis, B., Watts, R. A., Andersson, C. R., et al. (1997). Two hemoglobin genes in Arabidopsis thaliana: The evolutionary origins of leghemoglobins. PNAS, 94, 12230–12234.

    Article  CAS  Google Scholar 

  54. Sasakura, F., Uchiumi, T., Shimoda, Y., et al. (2006). A class 1 hemoglobin gene from Alnus firma functions in symbiotic and non-symbiotic tissues to detoxify nitric oxide. Molecular Plant-Microbe Interactions, 19, 441–450.

    Article  CAS  Google Scholar 

  55. Li, H., Qina, Y., Xiao, X., & Tanga, C. (2011). Screening of valid reference genes for real time RT-PCR data normalization in Hevea brasiliensis and expression validation of a sucrose transporter gene HbSUT3. Plant Science, 181, 132–139.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), FINEP, Fundação Araucária and Consórcio Pesquisa Café. KC is the recipient of a scholarship from CAPES/REUNI. LGEV and LFPP are CNPq research fellows.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Silva Domingues.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Carvalho, K., Bespalhok Filho, J.C., dos Santos, T.B. et al. Nitrogen Starvation, Salt and Heat Stress in Coffee (Coffea arabica L.): Identification and Validation of New Genes for qPCR Normalization. Mol Biotechnol 53, 315–325 (2013). https://doi.org/10.1007/s12033-012-9529-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-012-9529-4

Keywords

Navigation