Skip to main content

Advertisement

Log in

Secreted Luciferase for In Vivo Evaluation of Systemic Protein Delivery in Mice

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

A naturally secreted Gaussia luciferase (Gluc) has been utilized as a reporter for bioluminescence imaging (BLI) evaluation. However, the potential application of Gluc for in vivo monitoring of systemic protein delivery, as well as its natural biodistribution, has not been studied. To examine Gluc secretion and uptake profile, we injected Gluc-encoding plasmids into mice by hydrodynamic tail-vein injection. Whole-body BLI showed that imaging quantification obtained at pawpad was directly correlated to blood Gluc activities. When gene expression was restricted to the liver by the use of a hepatic promoter, in vivo Gluc biodistribution analysis revealed the kidney/bladder, stomach/intestine, and lung as the major uptake organs. Three-dimensional BLI identified liver/stomach and lung as the main internal luminescent sources, demonstrating the feasibility of detecting major uptake organs in live animals by 3D BLI with high-background signals in circulation. Notably, Gluc levels in capillary-depleted brain samples from Gluc-injected mice were comparable to controls, suggesting that Gluc may not cross the blood–brain barrier. Gluc uptake kinetics and intracellular half-life were assessed in various types of cell lines, implicating the involvement of non-specific pinocytosis. These results suggest that Gluc-based system may provide a useful tool for in vivo evaluation of protein/agent biodistribution following systemic delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bao, R., Connolly, D. C., Murphy, M., Green, J., Weinstein, J. K., Pisarcik, D. A., et al. (2002). Activation of cancer-specific gene expression by the survivin promoter. Journal of the National Cancer Institute, 9, 522–528.

    Article  Google Scholar 

  2. Chung, E., Yamashita, H., Au, P., Tannous, B. A., Fukumura, D., & Jain, R. K. (2009). Secreted Gaussia luciferase as a biomarker for monitoring tumor progression and treatment response of systemic metastases. PLoS ONE, 4, e8316.

    Article  Google Scholar 

  3. Hewett, J. W., Tannous, B., Niland, B. P., Nery, F. C., Zeng, J., Li, Y., et al. (2007). Mutant torsinA interferes with protein processing through the secretory pathway in DYT1 dystonia cells. The Proceedings of the National Academy of Sciences USA, 104, 7271–7276.

    Article  CAS  Google Scholar 

  4. Wurdinger, T., Badr, C., Pike, L., de Kleine, R., Weissleder, R., Breakefield, X. O., et al. (2008). A secreted luciferase for ex vivo monitoring of in vivo processes. Nature Methods, 5, 171–173.

    Article  CAS  Google Scholar 

  5. Tannous, B. A., Kim, D. E., Fernandez, J. L., Weissleder, R., & Breakefield, X. O. (2005). Codon-optimized Gaussia luciferase cDNA for mammalian gene expression in culture and in vivo. Molecular Therapy, 11, 435–443.

    Article  CAS  Google Scholar 

  6. Verhaegen, M., & Christopoulos, T. K. (2002). Recombinant Gaussia luciferase. Overexpression, purification, and analytical application of a bioluminescent reporter for DNA hybridization. Analytical Chemistry, 74, 4378–4385.

    Article  CAS  Google Scholar 

  7. Santos, E. B., Yeh, R., Lee, J., Nikhamin, Y., Punzalan, B., Punzalan, B., et al. (2009). Sensitive in vivo imaging of T cells using a membrane-bound Gaussia princeps luciferase. Nature Medicine, 15, 338–344.

    Article  CAS  Google Scholar 

  8. Feng, B., Tomizawa, K., Michiue, H., Han, X. J., Miyatake, S., & Matsui, H. (2010). Development of a bifunctional immunoliposome system for combined drug delivery and imaging in vivo. Biomaterials, 31, 4139–4145.

    Article  CAS  Google Scholar 

  9. Griesenbach, U., Vicente, C. C., Roberts, M. J., Meng, C., Soussi, S., Xenariou, S., et al. (2011). Secreted Gaussia luciferase as a sensitive reporter gene for in vivo and ex vivo studies of airway gene transfer. Biomaterials, 32, 2614–2624.

    Article  CAS  Google Scholar 

  10. Lee, J. Y., Kim, S., Hwang do, W., Jeong, J. M., Chung, J. K., Lee, M. C., et al. (2008). Development of a dual-luciferase reporter system for in vivo visualization of MicroRNA biogenesis and posttranscriptional regulation. Journal of Nuclear Medicine, 49, 285–294.

    Article  CAS  Google Scholar 

  11. Inoue, Y., Sheng, F., Kiryu, S., Watanabe, M., Ratanakanit, H., Izawa, K., et al. (2011). Gaussia luciferase for bioluminescence tumor monitoring in comparison with firefly luciferase. Molecular Imaging, 10, 377–385.

    CAS  Google Scholar 

  12. Hashimoto, T., Adams, K. W., Fan, Z., McLean, P. J., & Hyman, B. T. (2011). Characterization of oligomer formation of amyloid-beta peptide using a split-luciferase complementation assay. Journal of Biological Chemistry, 286, 27081–27091.

    Article  CAS  Google Scholar 

  13. Venisnik, K. M., Olafsen, T., Gambhir, S. S., & Wu, A. M. (2007). Fusion of Gaussia luciferase to an engineered anti-carcinoembryonic antigen (CEA) antibody for in vivo optical imaging. Molecular Imaging and Biology, 9, 267–277.

    Article  Google Scholar 

  14. Herweijer, H., & Wolff, J. A. (2007). Gene therapy progress and prospects: hydrodynamic gene delivery. Gene Therapy, 14, 99–107.

    CAS  Google Scholar 

  15. Kobayashi, N., Nishikawa, M., & Takakura, Y. (2005). The hydrodynamics-based procedure for controlling the pharmacokinetics of gene medicines at whole body, organ and cellular levels. Advanced Drug Delivery Reviews, 57, 713–731.

    Article  CAS  Google Scholar 

  16. Miao, C. H., Ye, X., & Thompson, A. R. (2003). High-level factor VIII gene expression in vivo achieved by nonviral liver-specific gene therapy vectors. Human Gene Therapy, 14, 1297–1305.

    Article  CAS  Google Scholar 

  17. Wang, D., Zhang, W., Kalfa, T. A., Grabowski, G., Davies, S., Malik, P., et al. (2009). Reprogramming erythroid cells for lysosomal enzyme production leads to visceral and CNS cross-correction in mice with Hurler syndrome. The Proceedings of the National Academy of Sciences USA, 106, 19958–19963.

    CAS  Google Scholar 

  18. Triguero, D., Buciak, J., & Pardridge, W. M. (1990). Capillary depletion method for quantification of blood-brain barrier transport of circulating peptides and plasma proteins. Journal of Neurochemistry, 54, 1882–1888.

    Article  CAS  Google Scholar 

  19. Brooks, A. R., Harkins, R. N., Wang, P., Qian, H. S., Liu, P., & Rubanyi, G. M. (2004). Transcriptional silencing is associated with extensive methylation of the CMV promoter following adenoviral gene delivery to muscle. The Journal of Gene Medicine, 6, 395–404.

    Article  CAS  Google Scholar 

  20. Yew, N. S., Zhao, H., Przybylska, M., Wu, I. H., Tousignant, J. D., Scheule, R. K., et al. (2002). CpG-depleted plasmid DNA vectors with enhanced safety and long-term gene expression in vivo. Molecular Therapy, 5, 731–738.

    Article  CAS  Google Scholar 

  21. Sawyer, G. J., Rela, M., Davenport, M., Whitehorne, M., Zhang, X., & Fabre, J. W. (2009). Hydrodynamic gene delivery to the liver: Theoretical and practical issues for clinical application. Current Gene Therapy, 9, 128–135.

    Article  CAS  Google Scholar 

  22. Al-Dosari, M., Zhang, G., Knapp, J. E., & Liu, D. (2006). Evaluation of viral and mammalian promoters for driving transgene expression in mouse liver. Biochemical and Biophysical Research Communications, 339, 673–678.

    Article  CAS  Google Scholar 

  23. Liu, F., Song, Y., & Liu, D. (1999). Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Therapy, 6, 1258–1266.

    Article  CAS  Google Scholar 

  24. Loser, P., Jennings, G. S., Strauss, M., & Sandig, V. (1998). Reactivation of the previously silenced cytomegalovirus major immediate-early promoter in the mouse liver: Involvement of NFkappaB. Journal of Virology, 72, 180–190.

    CAS  Google Scholar 

  25. Contag, C. H., & Bachmann, M. H. (2002). Advances in in vivo bioluminescence imaging of gene expression. Annual Review of Biomedical Engineering, 4, 235–260.

    Article  CAS  Google Scholar 

  26. Tromberg, B. J., Shah, N., Lanning, R., Cerussi, A., Espinoza, J., Pham, T., et al. (2000). Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy. Neoplasia, 2, 26–40.

    Article  CAS  Google Scholar 

  27. Tannous, B. A. (2009). Gaussia luciferase reporter assay for monitoring biological processes in culture and in vivo. Nature Protocols, 4, 582–591.

    Article  CAS  Google Scholar 

  28. Klose, A. D., & Beattie, B. J. (2009). Bioluminescence tomography with CT/MRI co-registration. IEEE Engineering in Medicine and Biology Society, 2009, 6327–6330.

    CAS  Google Scholar 

  29. Johannes, L., & Lamaze, C. (2002). Clathrin-dependent or not: Is it still the question? Traffic, 3, 443–451.

    Article  CAS  Google Scholar 

  30. Catizone, A., Medolago Albani, L., Reola, F., & Alescio, T. (1993). A quantitative assessment of non specific pinocytosis by human endothelial cells surviving in vitro. Cellular and Molecular Biology, 39, 155–169.

    CAS  Google Scholar 

  31. Giodini, A., & Cresswell, P. (2008). Hsp90-mediated cytosolic refolding of exogenous proteins internalized by dendritic cells. EMBO Journal, 27, 201–211.

    Article  CAS  Google Scholar 

  32. Montesano, R., Pepper, M. S., Mohle-Steinlein, U., Risau, W., Wagner, E. F., & Orci, L. (1990). Increased proteolytic activity is responsible for the aberrant morphogenetic behavior of endothelial cells expressing the middle T oncogene. Cell, 62, 435–445.

    Article  CAS  Google Scholar 

  33. Pardridge, W. M. (2007). Blood–brain barrier delivery. Drug Discovery Today, 12, 54–61.

    Article  CAS  Google Scholar 

  34. Thompson, J. F., Hayes, L. S., & Lloyd, D. B. (1991). Modulation of firefly luciferase stability and impact on studies of gene regulation. Gene, 103, 171–177.

    Article  CAS  Google Scholar 

  35. Inouye, S., & Sahara, Y. (2008). Identification of two catalytic domains in a luciferase secreted by the copepod Gaussia princeps. Biochemical and Biophysical Research Communications, 365, 96–101.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Amber Edwards and Meghan Bromwell for technical assistance and Comprehensive Mouse and Cancer Core, as well as Veterinary Services Division, for their help with animal manipulation. This work was supported by National Institutes of Health grant NS 064330 (to D.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dao Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Amouri, S.S., Cao, P., Miao, C. et al. Secreted Luciferase for In Vivo Evaluation of Systemic Protein Delivery in Mice. Mol Biotechnol 53, 63–73 (2013). https://doi.org/10.1007/s12033-012-9519-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-012-9519-6

Keywords

Navigation