Skip to main content
Log in

A Modified MultiSite Gateway Cloning Strategy for Consolidation of Genes in Plants

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The genome information is offering opportunities to manipulate genes, polygenic characters and multiple traits in plants. Although a number of approaches have been developed to manipulate traits in plants, technical hurdles make the process difficult. Gene cloning vectors that facilitate the fusion, overexpression or down regulation of genes in plant cells are being used with various degree of success. In this study, we modified gateway MultiSite cloning vectors and developed a hybrid cloning strategy which combines advantages of both traditional cloning and gateway recombination cloning. We developed Gateway entry (pGATE) vectors containing attL sites flanking multiple cloning sites and plant expression vector (pKM12GW) with specific recombination sites carrying different plant and bacterial selection markers. We constructed a plant expression vector carrying a reporter gene (GUS), two Bt cry genes in a predetermined pattern by a single round of LR recombination reaction after restriction endonuclease-mediated cloning of target genes into pGATE vectors. All the three transgenes were co-expressed in Arabidopsis as evidenced by gene expression, histochemical assay and insect bioassay. The pGATE vectors can be used as simple cloning vectors as there are rare restriction endonuclease sites inserted in the vector. The modified multisite vector system developed is ideal for stacking genes and pathway engineering in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jacobsen, E., & Nataraja, K. N. (2008). Cisgenics—facilitating the second green revolution in India by improved traditional plant breeding. Current Science, 94, 1365–1366.

    Google Scholar 

  2. Capell, T., & Christou, P. (2004). Progress in plant metabolic engineering. Current Opinion in Biotechnology, 15, 148–154.

    Article  CAS  Google Scholar 

  3. Dafny-Yelin, M., & Tzfira, T. (2007). Delivery of multiple transgenes to plant cells. Plant Physiology, 145, 1118–1128.

    Article  CAS  Google Scholar 

  4. Halpin, C. (2005). Gene stacking in transgenic plants—the challenge for 21st century plant biotechnology. Plant Biotechnology Journal, 3, 141–155.

    Article  CAS  Google Scholar 

  5. Naqvi, S., Farre′, G., Sanahuja, G., Capell, T., Zhu, C., & Christou, P. (2010). When more is better: Multigene engineering in plants. Trends in Plant Science, 15, 48–56.

    Article  CAS  Google Scholar 

  6. Zhao, J. Z., Cao, J., Li, Y., Collins, H. L., Roush, R. T., Earle, E. D., et al. (2003). Transgenic plants expressing two Bacillus thuringiensis toxins delays insect resistance evolution. Nature Biotechnology, 21, 1493–1497.

    Article  CAS  Google Scholar 

  7. Wu, G., Truska, M., Datla, N., Vrinten, P., Bauer, J., Zank, T., et al. (2005). Step-wise engineering to produce high yields of very long-chain polyunsaturated fatty acids in plants. Nature Biotechnology, 23, 1013–1017.

    Article  CAS  Google Scholar 

  8. Seitz, C., Vitten, M., Steinbach, P., Hartl, S., Hirsche, J., Rathje, W., et al. (2007). Redirection of anthocyanin synthesis in Osteospermum hybrida by a two-enzyme manipulation strategy. Phytochemistry, 68, 824–833.

    Article  CAS  Google Scholar 

  9. Singla-Pareek, S. L., Reddy, M. K., & Sopory, S. K. (2003). Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proceedings of the National Academy of Sciences of the United States of America, 100, 14672–14677.

    Article  CAS  Google Scholar 

  10. Lin, L., Liu, Y. G., Xu, X., & Li, B. (2003). Efficient linking and transfer of multiple genes by a multigene assembly and transformation vector system. Proceedings of the National Academy of Sciences of the United States of America, 100, 5962–5967.

    Article  CAS  Google Scholar 

  11. Lucker, J., Schwab, W., van Hautum, B., Blaas, J., van der Plas, L. H., Bouwmeester, H. J., et al. (2004). Increased and altered fragrance of tobacco plants after metabolic engineering using three monoterpene synthases from lemon. Plant Physiology, 134, 510–519.

    Article  Google Scholar 

  12. Hadi, M. Z., McMullen, M. D., & Finer, J. J. (1996). Transformation of 12 different plasmids into soybean via particle bombardment. Plant Cell Reports, 15, 500–505.

    Article  CAS  Google Scholar 

  13. Chen, L., Marmey, P., Taylor, N. J., Brizard, J. P., Espinoza, C., D’Cruz, P., et al. (1998). Expression and inheritance of multiple transgenes in rice plants. Nature Biotechnology, 16, 1060–1064.

    Article  CAS  Google Scholar 

  14. Ye, X., Al Babili, S., Kloti, A., Zhang, J., Lucca, P., Beyer, P., et al. (2000). Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science, 287, 303–305.

    Article  CAS  Google Scholar 

  15. Nawrath, C., Poirier, Y., & Somerville, C. (1994). Targeting of the polyhydroxybutyrate biosynthetic-pathway to the plastids of Arabidopsis thaliana results in high-levels of polymer accumulation. Proceedings of the National Academy of Sciences of the United States of America, 91, 12760–12764.

    Article  CAS  Google Scholar 

  16. Halpin, C., Barakate, A., Askari, B. M., Abbott, J. C., & Ryan, M. D. (2001). Enabling technologies for manipulating multiple genes on complex pathways. Plant Molecular Biology, 47, 295–310.

    Article  CAS  Google Scholar 

  17. Daniell, H., & Dhingra, A. (2002). Multigene engineering: Dawn of an exciting new era in biotechnology. Current Opinion in Biotechnology, 13, 136–141.

    Article  CAS  Google Scholar 

  18. Ma, C. L., & Mitra, A. (2002). Expressing multiple genes in a single open reading frame with the 2A region of foot-and-mouth disease virus as a linker. Molecular Breeding, 9, 191–199.

    Article  CAS  Google Scholar 

  19. Karimi, M., Bleys, A., Vanderhaeghen, R., & Hilson, P. (2007). Building blocks for plant gene assembly. Plant Physiology, 145, 1183–1191.

    Article  CAS  Google Scholar 

  20. Walhout, A., Temple, G., Brasch, M., Hartley, J., Lorson, M., van den Heuvel, S., et al. (2000). GATEWAY recombinational cloning: application to the cloning of large numbers of open reading frames or ORFeomes. Methods in Enzymology, 328, 575–592.

    Article  CAS  Google Scholar 

  21. Chen, Q. J., Zhou, H. M., Chen, J., & Wang, X. C. (2006). A Gateway-based platform for multigene plant transformation. Plant Molecular Biology, 62, 927–936.

    Article  CAS  Google Scholar 

  22. Mahmood. T., Zar. T., & Saqlan Naqvi. S. M. (2008). Multiple pulses improve electroporation efficiency in Agrobacterium tumefaciens. Electronic J Biotechnology. ISSN: 0717-3458 11:1–4.

  23. Clough, S. J., & Bent, A. F. (1998). Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal, 16, 735–743.

    Article  CAS  Google Scholar 

  24. Datta, K., Schmidt, A., & Marcus, A. (1989). Characterization of two soybean repetitive proline-rich proteins and a cognate cdna from geminated axes. Plant Cell, 1, 945–952.

    CAS  Google Scholar 

  25. Jefferson, R. A., Kavanagh, T. A., & Bevan, M. W. (1987). GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO Journal, 6, 3901–3907.

    CAS  Google Scholar 

  26. Sundaram, K. M. S., & Sundaram, A. (1992). An insect bioassay method to determine persistence of Bacillus thuringiensis var. Kurstaki (B.t.k.) protein in oak foliage, following application of a commercial formulation under field and laboratory conditions. Journal of Environmental Science and Health. Part B, 27, 73–112.

    Article  Google Scholar 

  27. Halpin, C., & Boerjan, W. (2003). Stacking transgenes in forest trees. Trends in Plant Science, 8, 363–365.

    Article  CAS  Google Scholar 

  28. Curtis, M. D., & Grossniklaus, U. (2003). A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiology, 133, 462–469.

    Article  CAS  Google Scholar 

  29. Earley, K. W., Haag, J. R., Pontes, O., Opper, K., Juehne, T., Song, K., et al. (2006). Gateway-compatible vectors for plant functional genomics and proteomics. The Plant Journal, 45, 616–629.

    Article  CAS  Google Scholar 

  30. Karimi, M., Inze, D., & Depicker, A. (2002). GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends in Plant Science, 7, 193–195.

    Article  CAS  Google Scholar 

  31. Walter, M., Chaban, C., Schutze, K., Batistic, O., Weckermann, K., Nake, C., et al. (2004). Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. The Plant Journal, 40, 428–438.

    Article  CAS  Google Scholar 

  32. Rozwoadowski, K., Yang, W., & Kagale, S. (2008). Homologous recombination-mediated cloning and manipulation of genomic DNA regions using Gateway and recombineering systems. BMC Biotechnology, 8, 88.

    Article  Google Scholar 

  33. Chakrabarthi, S. K., Mandaokar, A. D., Ananda kumar, P., & Sharma, R. P. (1998). Synergistic effect of cry1Ac and cry1F δ-endotoxins of Bacillus thuringiensis on cotton bollworm, Helicoverpa armigera. Current Science, 75, 663–664.

    Google Scholar 

Download references

Acknowledgments

This study is supported by the research grants from the Indian Council of Agricultural Research, Department of Biotechnology and DST-FIST Government of India. Authors would like to thank to Dr. Rakesh Tuli, National Agri-Food Biotechnology Institute, Mohali, India and Dr. P. Anandakumar, National Research Centre for Plant Biotechnology, IARI, New Delhi 110012, India, for providing cry1Ec and cry1Aabc genes used in this study. Dr. A.R.V Kumar, Department of Entomology, University of Agricultural Sciences, GKVK, Bangalore, India provided DBM insect larvae for insect bioassay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karaba N. Nataraja.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 1082 kb)

Supplementary material 2 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vemanna, R.S., Chandrashekar, B.K., Hanumantha Rao, H.M. et al. A Modified MultiSite Gateway Cloning Strategy for Consolidation of Genes in Plants. Mol Biotechnol 53, 129–138 (2013). https://doi.org/10.1007/s12033-012-9499-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-012-9499-6

Keywords

Navigation