Skip to main content

Advertisement

Log in

Cell Therapy for CNS Trauma

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Cell therapy plays an important role in multidisciplinary management of the two major forms of central nervous system (CNS) injury, traumatic brain injury and spinal cord injury, which are caused by external physical trauma. Cell therapy for CNS disorders involves the use of cells of neural or non-neural origin to replace, repair, or enhance the function of the damaged nervous system and is usually achieved by transplantation of the cells, which are isolated and may be modified, e.g., by genetic engineering, when it may be referred to as gene therapy. Because the adult brain cells have a limited capacity to migrate to and regenerate at sites of injury, the use of embryonic stem cells that can be differentiated into various cell types as well as the use of neural stem cells has been explored. Preclinical studies and clinical trials are reviewed. Advantages as well as limitations are discussed. Cell therapy is promising for the treatment of CNS injury because it targets multiple mechanisms in a sustained manner. It can provide repair and regeneration of damaged tissues as well as prolonged release of neuroprotective and other therapeutic substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Jain, K. K. (2009). Cell therapy: Technologies, markets & companies. Basel, Switzerland: Jain PharmaBiotech Publications.

    Google Scholar 

  2. Jain, K. K. (2008). Neuroprotection in traumatic brain injury. Drug Discovery Today, 13, 1082–1089. doi:10.1016/j.drudis.2008.09.006.

    Article  CAS  Google Scholar 

  3. Maegele, M., & Schaefer, U. (2008). Stem cell-based cellular replacement strategies following traumatic brain injury (TBI). Minimally Invasive Therapy and Allied Technologies, 17, 119–131. doi:10.1080/13645700801970087.

    Article  Google Scholar 

  4. Parr, A. M., Tator, C. H., & Keating, A. (2007). Bone marrow-derived mesenchymal stromal cells for the repair of central nervous system injury. Bone Marrow Transplantation, 40, 609–619. doi:10.1038/sj.bmt.1705757.

    Article  CAS  Google Scholar 

  5. Weidenfeller, C., Svendsen, C. N., & Shusta, E. V. (2007). Differentiating embryonic neural progenitor cells induce blood–brain barrier properties. Journal of Neurochemistry, 101, 555–565. doi:10.1111/j.1471-4159.2006.04394.x.

    Article  CAS  Google Scholar 

  6. Watson, D. J., Longhi, L., Lee, E. B., et al. (2003). Genetically modified NT2 N human neuronal cells mediate long-term gene expression as CNS grafts in vivo and improve functional cognitive outcome following experimental traumatic brain injury. Journal of Neuropathology and Experimental Neurology, 62, 368–380.

    CAS  Google Scholar 

  7. Longhi, L., Watson, D. J., Saatman, K. E., et al. (2004). Ex vivo gene therapy using targeted engraftment of NGF expressing human NT2 N neurons attenuates cognitive deficits following traumatic brain injury in mice. Journal of Neurotrauma, 21, 1723–1736.

    Google Scholar 

  8. Shen, F., Wen, L., Yang, X., & Liu, W. (2007). The potential application of gene therapy in the treatment of traumatic brain injury. Neurosurgical Review, 30, 291–298. doi:10.1007/s10143-007-0094-4.

    Article  Google Scholar 

  9. Harting, M. T., Baumgartner, J. E., Worth, L. L., et al. (2008). Cell therapies for traumatic brain injury. Neurosurgical Focus, 24, E18. doi:10.3171/FOC/2008/24/3-4/E17.

    Article  Google Scholar 

  10. Harting, M. T., Jimenez, F., Adams, S. D., et al. (2008). Acute, regional inflammatory response after traumatic brain injury: Implications for cellular therapy. Surgery, 144, 803–813. doi:10.1016/j.surg.2008.05.017.

    Article  Google Scholar 

  11. Molcanyi, M., Riess, P., Bentz, K., et al. (2007). Trauma-associated inflammatory response impairs embryonic stem cell survival and integration after implantation into injured rat brain. Journal of Neurotrauma, 24, 625–637. doi:10.1089/neu.2006.0180.

    Article  Google Scholar 

  12. Tate, C. C., Shear, D. A., Tate, M. C., et al. (2009). Laminin and fibronectin scaffolds enhance neural stem cell transplantation into the injured brain. Journal of Tissue Engineering and Regenerative Medicine. doi:10.1002/term.154.

  13. Sykova, E., & Jendelova, P. (2007). In vivo tracking of stem cells in brain and spinal cord injury. Progress in Brain Research, 161C, 367–383. doi:10.1016/S0079-6123(06)61026-1.

    Article  CAS  Google Scholar 

  14. Meletis, K., Barnabé-Heider, F., Carlén, M., et al. (2008). Spinal cord injury reveals multilineage differentiation of ependymal cells. PLoS Biology, 6(7), e182. doi:10.1371/journal.pbio.0060182.

    Article  CAS  Google Scholar 

  15. Li, Y., Carlstedt, T., Berthold, C. H., & Raisman, G. (2004). Interaction of transplanted olfactory-ensheathing cells and host astrocytic processes provides a bridge for axons to regenerate across the dorsal root entry zone. Experimental Neurology, 188, 300–308. doi:10.1016/j.expneurol.2004.04.021.

    Article  Google Scholar 

  16. Collazos-Castro, J., Muneton-Gomez, V., & Nieto-Sampedro, M. (2005). Olfactory glia transplantation into cervical spinal cord contusion injuries. Journal of Neurosurgery Spine, 3, 308–317.

    Article  Google Scholar 

  17. Mackay-Sim, A., Féron, F., Cochrane, J., et al. (2008). Autologous olfactory ensheathing cell transplantation in human paraplegia: A 3-year clinical trial. Brain, 131, 2376–2386. doi:10.1093/brain/awn173.

    Article  CAS  Google Scholar 

  18. Kang, S. K., Shin, M. J., & Jung, J. S. (2006). Autologous adipose tissue-derived stromal cells for treatment of spinal cord injury. Stem Cells and Development, 15, 583–594. doi:10.1089/scd.2006.15.583.

    Article  CAS  Google Scholar 

  19. Keirstead, H. S., Nistor, G., Berna, G., et al. (2005). Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. The Journal of Neuroscience, 25, 4694–4705. doi:10.1523/JNEUROSCI.0311-05.2005.

    Article  CAS  Google Scholar 

  20. Davies, J. E., Huang, C., Proschel, C., et al. (2006). Astrocytes derived from glial-restricted precursors promote spinal cord repair. Journal of Biology (Online), 5, 7. doi:10.1186/jbiol35.

  21. Ronsyn, M. W., Daans, J., Spaepen, G., et al. (2007). Plasmid-based genetic modification of human bone marrow-derived stromal cells: Analysis of cell survival and transgene expression after transplantation in rat spinal cord. BMC Biotechnology, 7, 90. doi:10.1186/1472-6750-7-90.

    Article  CAS  Google Scholar 

  22. Cummings, B. J., Uchida, N., Tamaki, S. J., et al. (2005). Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proceedings of the National Academy of Sciences of the United States of America, 102, 14069–14074. doi:10.1073/pnas.0507063102.

    Article  CAS  Google Scholar 

  23. Yan, J., Xu, L., Welsh, A. M., et al. (2007). Extensive neuronal differentiation of human neural stem cell grafts in adult rat spinal cord. PLoS Medicine, 4, e39. doi:10.1371/journal.pmed.0040039.

    Article  CAS  Google Scholar 

  24. Pallini, R., Vitiani, L., Bez, A., et al. (2005). Homologous transplantation of neural stem cells to the injured spinal cord of mice. Neurosurgery, 57, 1014–1025. doi:10.1227/01.NEU.0000180058.58372.4c.

    Article  Google Scholar 

  25. Lu, P., Yang, H., Jones, L. L., et al. (2004). Combinatorial therapy with neurotrophins and cAMP promotes axonal regeneration beyond sites of spinal cord injury. The Journal of Neuroscience, 24, 6402–6409. doi:10.1523/JNEUROSCI.1492-04.2004.

    Article  CAS  Google Scholar 

  26. Hofstetter, C., Holmstrom, N., Lilja, J., et al. (2005). Allodynia limits the usefulness of intraspinal neural stem cell grafts and directed differentiation improves outcome. Nature Neuroscience, 8, 346–353. doi:10.1038/nn1405.

    Article  CAS  Google Scholar 

  27. Ziv, Y., Avidan, H., Pluchino, S., et al. (2006). Synergy between immune cells and adult neural stem/progenitor cells promotes functional recovery from spinal cord injury. Proceedings of the National Academy of Sciences of the United States of America, 103, 13174–13179. doi:10.1073/pnas.0603747103.

    Article  CAS  Google Scholar 

  28. Teng, Y. D., Lavik, E. B., Qu, X., et al. (2002). Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proceedings of the National Academy of Sciences of the United States of America, 99, 3024–3029. doi:10.1073/pnas.052678899.

    Article  CAS  Google Scholar 

  29. Cao, Q., Xu, X. M., Devries, W. H., et al. (2005). Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells. The Journal of Neuroscience, 25, 6947–6957. doi:10.1523/JNEUROSCI.1065-05.2005.

    Article  CAS  Google Scholar 

  30. Lepore, A. C., Bakshi, A., Swanger, S. A., et al. (2005). Neural precursor cells can be delivered into the injured cervical spinal cord by intrathecal injection at the lumbar cord. Brain Research, 1045, 206–216.

    CAS  Google Scholar 

  31. Callera, F., & de Melo, C. (2007). Magnetic resonance tracking of magnetically labeled autologous bone marrow CD34+ cells transplanted into the spinal cord via lumbar puncture technique in patients with chronic spinal cord injury: CD34+ cells’ migration into the injured site. Stem Cells and Development, 16, 461–466. doi:10.1089/scd.2007.0083.

    Article  Google Scholar 

  32. Fujiwara, Y., Tanaka, N., Ishida, O., et al. (2004). Intravenously injected neural progenitor cells of transgenic rats can migrate to the injured spinal cord and differentiate into neurons, astrocytes and oligodendrocytes. Neuroscience Letters, 366, 287–291. doi:10.1016/j.neulet.2004.05.080.

    Article  CAS  Google Scholar 

  33. Deda, H., Inci, M., Kurekci, A., et al. (2008). Treatment of chronic spinal cord injured patients with autologous bone marrow-derived hematopoietic stem cell transplantation: 1-year follow-up. Cytotherapy, 10, 565–574. doi:10.1080/14653240802241797.

    Article  CAS  Google Scholar 

  34. Park, H. C., Shim, Y. S., Ha, Y., et al. (2005). Treatment of complete spinal cord injury patients by autologous bone marrow cell transplantation and administration of granulocyte-macrophage colony stimulating factor. Tissue Engineering, 11, 913–922. doi:10.1089/ten.2005.11.913.

    Article  CAS  Google Scholar 

  35. Ronsyn, M. W., Berneman, Z. N., Van Tendeloo, V. F., et al. (2008). Can cell therapy heal a spinal cord injury? Spinal Cord, 46, 532–539. doi:10.1038/sc.2008.13.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Jain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, K.K. Cell Therapy for CNS Trauma. Mol Biotechnol 42, 367–376 (2009). https://doi.org/10.1007/s12033-009-9166-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-009-9166-8

Keywords

Navigation