Skip to main content

Advertisement

Log in

DSN Depletion is a Simple Method to Remove Selected Transcripts from cDNA Populations

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

A novel DSN-depletion method allows elimination of selected sequences from full-length-enriched cDNA libraries. Depleted cDNA can be applied for subsequent EST sequencing, expression cloning, and functional screening approaches. The method employs specific features of the kamchatka crab duplex-specific nuclease (DSN). This thermostable enzyme is specific for double-stranded (ds) DNA, and is thus used for selective degradation of ds DNA in complex nucleic acids. DSN depletion is performed prior to library cloning, and includes the following steps: target cDNA is mixed with excess driver DNA (representing fragments of the genes to be eliminated), denatured, and allowed to hybridize. During hybridization, driver molecules form hybrids with the target sequences, leading to their removal from the ss DNA fraction. Next, the ds DNA fraction is hydrolyzed by DSN, and the ss fraction is amplified using long-distance PCR. DSN depletion has been tested in model experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aiba, K., Carter, M. G., Matoba, R., & Ko, M. S. (2006). Genomic approaches to early embryogenesis and stem cell biology. Seminars in Reproductive Medicine, 24(5), 330–339. doi:10.1055/s-2006-952155.

    Article  CAS  Google Scholar 

  2. Hart, C. P. (2005). Finding the target after screening the phenotype. Drug Discovery Today, 10(7), 513–519. doi:10.1016/S1359-6446(05)03415-X.

    Article  CAS  Google Scholar 

  3. Kawakami, Y., Fujita, T., Matsuzaki, Y., Sakurai, T., Tsukamoto, M., Toda, M., et al. (2004). Identification of human tumor antigens and its implications for diagnosis and treatment of cancer. Cancer Science, 95(10), 784–791. doi:10.1111/j.1349-7006.2004.tb02182.x.

    Article  CAS  Google Scholar 

  4. Diatchenko, L., Lau, Y.-F. C., Campbell, A. P., Chenchik, A., Mogadam, F., Huang, B., et al. (1996). Suppression Sabtracive Hybridization, A method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proceedings of the National Academy of Sciences of the United States of America, 93, 6025–6030. doi:10.1073/pnas.93.12.6025.

    Article  CAS  Google Scholar 

  5. Bonaldo, M. F., Lennon, G., & Soares, M. B. (1996). Normalization and subtraction: Two approaches to facilitate gene discovery. Genome Research, 6, 791–806. doi:10.1101/gr.6.9.791.

    Article  CAS  Google Scholar 

  6. Scheetz, T. E., Laffin, J. J., Berger, B., Holte, S., Baumes, S. A., Brown, R., 2nd, et al. (2004). High-throughput gene discovery in the rat. Genome Research, 14(4), 733–741. doi:10.1101/gr.1414204.

    Article  CAS  Google Scholar 

  7. Swaroop, A., Xu, J., Agarwal, N., & Weissman, S. M. (1991). A simple and efficient cDNA library subtraction procedure, Isolation of human retina-specific cDNA clones. Nucleic Acids Research, 19, 1954. doi:10.1093/nar/19.8.1954.

    Article  CAS  Google Scholar 

  8. Carninci, P., Shibata, Y., Hayatsu, N., Sugahara, Y., Shibata, K., Itoh, M., et al. (2000). Normalization and subtraction of cap-trapper-selected cDNAs to prepare full-length cDNA libraries for rapid discovery of new genes. Genome Research, 10, 1617–1630. doi:10.1101/gr.145100.

    Article  CAS  Google Scholar 

  9. Shagin, D. A., Rebrikov, D. V., Kozhemyako, V. B., Altshuler, I. M., Shcheglov, A. S., Zhulidov, P. A., et al. (2002). A novel method for SNP detection using a new duplex-specific nuclease from crab hepatopancreas. Genome Research, 12, 1935–1942. doi:10.1101/gr.547002.

    Article  CAS  Google Scholar 

  10. Zhulidov, P. A., Bogdanova, E. A., Shcheglov, A. S., Vagner, L. L., Khaspekov, G. L., Kozhemyako, V. B., et al. (2004). Simple cDNA normalization using kamchatka crab duplex-specific nuclease. Nucleic Acids Research, 32, e37. doi:10.1093/nar/gnh031.

    Article  Google Scholar 

  11. Zhulidov, P. A., Bogdanova, E. A., Shcheglov, A. S., Shagina, I. A., Wagner, L. L., Khaspekov, G. L., et al. (2005). A method for the preparation of normalized cDNA libraries enriched with full-length sequences. Russian Journal of Bioorganic Chemistry, 31, 170–177. doi:10.1007/s11171-005-0023-7.

    Article  CAS  Google Scholar 

  12. Bogdanova, E. A., Shagin, D. A., & Lukyanov, S. A. (2008). Normalization of full-length enriched cDNA. Molecular BioSystems, 4(3), 205–212. doi:10.1039/b715110c.

    Article  CAS  Google Scholar 

  13. Al’tshuler, I. M., Zhulidov, P. A., Bogdanova, E. A., Mudrik, N. N., & Shagin, D. A. (2005). Application of the duplex-specific nuclease preference method to the analysis of point mutations in human genes. Russian Journal of Bioorganic Chemistry, 31(6), 567–575. doi:10.1007/s11171-005-0078-5.

    Article  CAS  Google Scholar 

  14. Zhao, Y., Hoshiyama, H., Shay, J. W., & Wright, W. E. (2008). Quantitative telomeric overhang determination using a double-strand specific nuclease. Nucleic Acids Research, 36(3), e14. doi:10.1093/nar/gkm1063.

    Article  Google Scholar 

  15. Matz, M. V. (2003). Amplification of representative cDNA pools from microscopic amounts of animal tissue. Methods in Molecular Biology (Clifton N.J.), 221, 103–116.

    CAS  Google Scholar 

  16. Barnes, W. M. (1994). PCR amplification of up to 35_kb DNA with high fidelity and high yield from lambda bacteriophage templates. Proceedings of the National Academy of Sciences of the United States of America, 91, 2216–2220. doi:10.1073/pnas.91.6.2216.

    Article  CAS  Google Scholar 

  17. Young, B. D., & Anderson, M. (1985). Quantitative analysis of solution hybridisation. In B. D. Hames & S. J. Higgins (Eds.), Nucleic acids hybridisation, a practical approach (pp. 47–71). Oxford-Washington DC: IRL Press.

    Google Scholar 

  18. Matz, M., Shagin, D., Bogdanova, E., Britanova, O., Lukyanov, S., Diatchenko, L., et al. (1999). Amplification of cDNA ends based on template-switching effect and step-out PCR. Nucleic Acids Research, 27(6), 1558–1560. doi:10.1093/nar/27.6.1558.

    Article  CAS  Google Scholar 

  19. Zhu, Y. Y., Machleder, E. M., Chenchik, A., Li, R., & Siebert, P. D. (2001). Reverse transcriptase template switching, a SMART approach for full-length cDNA library construction. BioTechniques, 30, 892–897.

    CAS  Google Scholar 

  20. Gurskaya, N. G., Diatchenko, L., Chenchik, A., Siebert, P. D., Khaspekov, G. L., Lukyanov, K. A., et al. (1996). Equalizing cDNA subtraction based on selective suppression of polymerase chain reaction: cloning of Jurkat cell transcripts induced by phytohemaglutinin and phorbol 12-myristate 13-acetate. Analytical Biochemistry, 240(1), 90–97. doi:10.1006/abio.1996.0334.

    Article  CAS  Google Scholar 

  21. Beavo, J. A. (1995). Cyclic nucleotide phosphodiesterases: Functional implications of multiple isoforms. Physiological Reviews, 75, 725–748.

    CAS  Google Scholar 

  22. Manganiello, V. C., Murata, T., Taira, M., Belfrage, P., & Degerman, E. (1995). Diversity in cyclic nucleotide phosphodiesterase isoenzyme families. Archives of Biochemistry and Biophysics, 322(1), 1–13. doi:10.1006/abbi.1995.1429.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by grant from Rosnauka 02.512.11.2216 and by NS-2395.2008.4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina A. Bogdanova.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1 (DOC 33 kb)

ESM2 (DOC 370 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogdanova, E.A., Shagina, I.A., Mudrik, E. et al. DSN Depletion is a Simple Method to Remove Selected Transcripts from cDNA Populations. Mol Biotechnol 41, 247–253 (2009). https://doi.org/10.1007/s12033-008-9131-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-008-9131-y

Keywords

Navigation