Skip to main content

Advertisement

Log in

The Rational Design of β Cell Cytoprotective Gene Transfer Strategies: Targeting Deleterious iNOS Expression

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Islet transplantation represents a promising therapeutic strategy for the treatment of type 1 diabetes mellitus (T1DM) [Hakim and Papalois (Ann Ital Chir 75:1–7, 2004); Jaeckel et al. (Internist (Berl) 45:1268–1280, 2004); Sutherland et al. (Transplant Proc 36:1697–1699, 2004)]. The insulin-secreting pancreatic β cells of the islet allograft are, however, subject to recurrent immune-mediated damage. Principal among the molecular culprits involved in this destructive process is the proinflammatory cytokine IL-1β. IL-1β-induced β cell destruction may be mediated by the generation of NO and/or ROS, although the relative importance of NO and ROS in this process remains unclear. This study broadly encompassed three arms of investigation: the first of these was geared toward the establishment of a robust in vitro cell system for the study of IL-1β-induced pathophysiology; the second arm aimed to provide a comparative analysis of the gene transfer profiles of the three most commonly used gene transfer vehicles, namely plasmid vectors, adenoviral vectors, and lentiviral vectors, in the aforementioned cell system; the final arm aimed to screen an array of potentially cytoprotective gene transfer strategies incorporating the optimal gene transfer vectors. Briefly, we established an in vitro β cell system that accurately reflected primary β cell cytokine-induced pathophysiology. That is, IL-1β exposure (100 U/ml) induced a time-dependent decrease in rat insulinoma (RIN) cell viability, which coincided with an induction in iNOS expression and nitrite accumulation. Gene transfer studies using plasmid, adenoviral, or lentiviral vectors underscored the superiority of viral vector-based gene transfer strategies for the manipulation of this β cell line. Using these vectors, we provide evidence that NF-κB-based iNOS inhibition confers significant protection against IL-1β-induced damage whereas antioxidant overexpression fails to provide protection. Conferred cytoprotection was associated with a suppression of iNOS expression and nitrite accumulation. From a therapeutic standpoint, gene transfer strategies employing efficient viral vectors to target iNOS activation may harbour therapeutic potential in preserving β cell survival against proinflammatory cytokine exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hakim, N., & Papalois, V. (2004). Pancreas and islet transplantation. Annali Italiani di Chirurgia, 75, 1–7.

    PubMed  Google Scholar 

  2. Jaeckel, E., Becker, T., & Manns, M. P. (2004). Organ transplantation in endocrinology. Islet cells and pancreas. Internist (Berl), 45, 1268–1280.

    Article  CAS  Google Scholar 

  3. Sutherland, D. E., Gruessner, R., Kandswamy, R., Humar, A., Hering, B., & Gruessner, A. (2004). Beta-cell replacement therapy (pancreas and islet transplantation) for treatment of diabetes mellitus: an integrated approach. Transplantation Proceedings, 36, 1697–1699.

    Article  PubMed  CAS  Google Scholar 

  4. Rabinovitch, A., Suarez-Pinzon, W. L., Strynadka, K., Lakey, J. R., & Rajotte, R. V. (1996). Human pancreatic islet beta-cell destruction by cytokines involves oxygen free radicals and aldehyde production. Journal of Clinical Endocrinology and Metabolism, 81, 3197–3202.

    Article  PubMed  CAS  Google Scholar 

  5. Corbett, J. A., Sweetland, M. A., Wang, J. L., Lancaster, J. R. Jr., & McDaniel, M. L. (1993). Nitric oxide mediates cytokine-induced inhibition of insulin secretion by human islets of Langerhans. Proceedings of National Academy Sciences USA, 90, 1731–1735.

    Article  CAS  Google Scholar 

  6. Delaney, C. A., & Eizirik, D. L. (1996). Intracellular targets for nitric oxide toxicity to pancreatic beta-cells. Brazilian Journal of Medical and Biological Research, 29, 569–579.

    PubMed  CAS  Google Scholar 

  7. Southern, C., Schulster, D., & Green, I. C. (1990). Inhibition of insulin secretion by interleukin-1 beta and tumour necrosis factor-alpha via an l-arginine-dependent nitric oxide generating mechanism. FEBS Letter, 276, 42–44.

    Article  CAS  Google Scholar 

  8. McCabe, C., & O’Brien, T. (2007). Beta cell cytoprotection using lentiviral vector-based iNOS-specific shRNA delivery. Biochemical and Biophysical Research Communication, 357, 75–80.

    Article  CAS  Google Scholar 

  9. McCabe, C., Samali, A., & O’Brien, T. (2006). Beta cell cytoprotective strategies: Establishing the relative roles for iNOS and ROS. Biochemical and Biophysical Research Communication, 342, 1240–1248.

    Article  CAS  Google Scholar 

  10. Lenzen, S., Drinkgern, J., & Tiedge, M. (1996). Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radical Biology and Medicine, 20, 463–466.

    Article  PubMed  CAS  Google Scholar 

  11. McCabe, C., Samali, A., & O’Brien, T. (2006). Cytoprotection of beta cells: Rational gene transfer strategies. Diabetes–Metabolism Research and Reviews, 22, 241–252.

    Article  PubMed  CAS  Google Scholar 

  12. Lortz, S., Tiedge, M., Nachtwey, T., Karlsen, A. E., Nerup, J., & Lenzen, S. (2000). Protection of insulin-producing RINm5F cells against cytokine-mediated toxicity through overexpression of antioxidant enzymes. Diabetes, 49, 1123–1130.

    Article  PubMed  CAS  Google Scholar 

  13. Chen, G., Hohmeier, H. E., Gasa, R., Tran, V. V., & Newgard, C. B. (2000). Selection of insulinoma cell lines with resistance to interleukin-1beta- and gamma-interferon-induced cytotoxicity. Diabetes, 49, 562–570.

    Article  PubMed  CAS  Google Scholar 

  14. Moriscot, C., Pattou, F., Kerr-Conte, J., Richard, M. J., Lemarchand, P., & Benhamou, P. Y. (2000). Contribution of adenoviral-mediated superoxide dismutase gene transfer to the reduction in nitric oxide-induced cytotoxicity on human islets and INS-1 insulin-secreting cells. Diabetologia, 43, 625–631.

    Article  PubMed  CAS  Google Scholar 

  15. Azevedo-Martins, A. K., Lortz, S., Lenzen, S., Curi, R., Eizirik, D. L., & Tiedge, M. (2003). Improvement of the mitochondrial antioxidant defense status prevents cytokine-induced nuclear factor-kappaB activation in insulin-producing cells. Diabetes, 52, 93–101.

    Article  PubMed  CAS  Google Scholar 

  16. Tiedge, M., Lortz, S., Munday, R., & Lenzen, S. (1999). Protection against the co-operative toxicity of nitric oxide and oxygen free radicals by overexpression of antioxidant enzymes in bioengineered insulin-producing RINm5F cells. Diabetologia, 42, 849–855.

    Article  PubMed  CAS  Google Scholar 

  17. Tiedge, M., Lortz, S., Munday, R., & Lenzen, S. (1998). Complementary action of antioxidant enzymes in the protection of bioengineered insulin-producing RINm5F cells against the toxicity of reactive oxygen species. Diabetes, 47, 1578–1585.

    Article  PubMed  CAS  Google Scholar 

  18. Bertera, S., Crawford, M. L., Alexander, A. M., Papworth, G. D., Watkins, S. C., Robbins, P. D., & Trucco, M. (2003). Gene transfer of manganese superoxide dismutase extends islet graft function in a mouse model of autoimmune diabetes. Diabetes, 52, 387–393.

    Article  PubMed  CAS  Google Scholar 

  19. Karsten, V., Sigrist, S., Moriscot, C., Benhamou, P. Y., Lemarchand, P., Belcourt, A., Poindron, P., Pinget, M., & Kessler, L. (2002). Reduction of macrophage activation after antioxidant enzymes gene transfer to rat insulinoma INS-1 cells. Immunobiology, 205, 193–203.

    Article  PubMed  CAS  Google Scholar 

  20. Moriscot, C., Richard, M. J., Favrot, M. C., & Benhamou, P. Y. (2003). Protection of insulin-secreting INS-1 cells against oxidative stress through adenoviral-mediated glutathione peroxidase overexpression. Diabetes Metabolism, 29, 145–151.

    Article  PubMed  CAS  Google Scholar 

  21. Li, X., Chen, H., & Epstein, P. N. (2004). Metallothionein protects islets from hypoxia and extends islet graft survival by scavenging most kinds of reactive oxygen species. Journal of Biological Chemistry, 279, 765–771.

    Article  PubMed  CAS  Google Scholar 

  22. Schroppel, B., Zhang, N., Chen, P., Chen, D., Bromberg, J. S., & Murphy, B. (2005). Role of donor-derived monocyte chemoattractant protein-1 in murine islet transplantation. Journal of American Society Nephrology, 16, 444–451.

    Article  Google Scholar 

  23. Giannoukakis, N., Rudert, W. A., Trucco, M., & Robbins, P. D. (2000). Protection of human islets from the effects of interleukin-1beta by adenoviral gene transfer of an Ikappa B repressor. Journal of Biological Chemistry, 275, 36509–36513.

    Article  PubMed  CAS  Google Scholar 

  24. Heimberg, H., Heremans, Y., Jobin, C., Leemans, R., Cardozo, A. K., Darville, M., & Eizirik, D. L. (2001). Inhibition of cytokine-induced NF-kappaB activation by adenovirus-mediated expression of a NF-kappaB super-repressor prevents beta-cell apoptosis. Diabetes, 50, 2219–2224.

    Article  PubMed  CAS  Google Scholar 

  25. Kwon, G., Corbett, J. A., Rodi, C. P., Sullivan, P., & McDaniel, M. L. (1995). Interleukin-1 beta-induced nitric oxide synthase expression by rat pancreatic beta-cells: evidence for the involvement of nuclear factor kappa B in the signaling mechanism. Endocrinology, 136, 4790–4795.

    Article  PubMed  CAS  Google Scholar 

  26. Zanetti, M., Sato, J., Katusic, Z. S., & O’Brien, T. (2000). Gene transfer of endothelial nitric oxide synthase alters endothelium-dependent relaxations in aortas from diabetic rabbits. Diabetologia, 43, 340–347.

    Article  PubMed  CAS  Google Scholar 

  27. Oberholzer, J., Shapiro, A. M., Lakey, J. R., Ryan, E. A., Rajotte, R. V., Korbutt, G. S., Morel, P., & Kneteman, N. M. (2003). Current status of islet cell transplantation. Advances in Surgery, 37, 253–282.

    PubMed  Google Scholar 

  28. Ryan, E. A., Paty, B. W., Senior, P. A., & Shapiro, A. M. (2004). Risks and side effects of islet transplantation. Current Diabetes Report, 4, 304–309.

    Article  Google Scholar 

  29. Abdelli, S., Ansite, J., Roduit, R., Borsello, T., Matsumoto, I., Sawada, T., Allaman-Pillet, N., Henry, H., Beckmann, J. S., Hering, B. J., & Bonny, C. (2004). Intracellular stress signaling pathways activated during human islet preparation and following acute cytokine exposure. Diabetes, 53, 2815–2823.

    Article  PubMed  CAS  Google Scholar 

  30. Chen, H., Li, X., & Epstein, P. N. (2005). MnSOD and catalase transgenes demonstrate that protection of islets from oxidative stress does not alter cytokine toxicity. Diabetes, 54, 1437–1446.

    Article  PubMed  CAS  Google Scholar 

  31. Delaney, C. A., Tyrberg, B., Bouwens, L., Vaghef, H., Hellman, B., & Eizirik, D. L. (1996). Sensitivity of human pancreatic islets to peroxynitrite-induced cell dysfunction and death. FEBS Letter, 394, 300–306.

    Article  CAS  Google Scholar 

  32. Beeharry, N., Chambers, J. A., Faragher, R. G., Garnett, K. E., & Green, I. C. (2004). Analysis of cytokine-induced NO-dependent apoptosis using RNA interference or inhibition by 1400W. Nitric Oxide, 10, 112–118.

    Article  PubMed  CAS  Google Scholar 

  33. Mahato, R. I., Henry, J., Narang, A. S., Sabek, O., Fraga, D., Kotb, M., & Gaber, A. O. (2003). Cationic lipid and polymer-based gene delivery to human pancreatic islets. Molecular Therapy, 7, 89–100.

    Article  PubMed  CAS  Google Scholar 

  34. Benhamou, P. Y., Moriscot, C., Prevost, P., Rolland, E., Halimi, S., & Chroboczek, J. (1997). Standardization of procedure for efficient ex vivo gene transfer into porcine pancreatic islets with cationic liposomes. Transplantation, 63, 1798–1803.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The technical assistance from all NCBES and REMEDI is gratefully acknowledged. This research was supported by a grant form the Health Research Board of Ireland. CMcC is funded by the IRCSET Embark Initiative. TOB is funded by an SFI CSET, and the HEA, and the Juvenile Diabetes Foundation International.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy O’Brien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCabe, C., O’Brien, T. The Rational Design of β Cell Cytoprotective Gene Transfer Strategies: Targeting Deleterious iNOS Expression. Mol Biotechnol 37, 38–47 (2007). https://doi.org/10.1007/s12033-007-0049-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-007-0049-6

Keywords

Navigation