Skip to main content

Advertisement

Log in

Targeted inhibition of genome-wide DNA methylation analysis in epigenetically modulated phenotypes in lung cancer

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

DNA methylation analysis, an epigenetic specification, has been explored for partial determination of cancer cell phenotypes. The development of metastasis in cancerogenesis has led its feasible association with the epigenetic modulations. We generated highly aggressive non-small cell lung cancer cell lines (HTB56 and A549) by using in vivo selection approach. These were, then, subjected to DNA methylation analysis (genome-wide). We also explored the therapeutic effects of azacytidine, an epigenetic agent, on DNA methylation patterns as well as the in vivo phenotypes. During the development of highly aggressive cell lines, we observed widespread modulations in DNA methylation. Reduced representation bisulfite sequencing was used and compared with the less aggressive parental cell lines to identify the differential methylation, which was achieved up to 2.7 % of CpG-rich region. Azacytidine inhibited DNA methyltransferase and reversed the prometastatic phenotype. We found its high association with the preferential loss of DNA methylation from hypermethylated sites. After persisted exposure of azacytidine, we observed that DNA methylation affected the polycomb-binding sites. We found close association of DNA methylome modifications with metastatic capability of non-small cell lung cancer. We also concluded that epigenetic modulation could be used as a potential therapeutic approach to prevent metastasis formation as prometastatic phenotype was reversed due to inhibition of DNA methyltransferase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics. CA Cancer J Clin. 2013;63:11–30.

    Article  PubMed  Google Scholar 

  2. Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer. 2004;4:143–53.

    Article  CAS  PubMed  Google Scholar 

  3. Konishi K, Watanabe Y, Shen L, et al. DNA methylation profiles of primary colorectal carcinoma and matched liver metastasis. PLoS One. 2011;6:e27889.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Baylin SB, Jones PA. A decade of exploring the cancer epigenome-biological and translational implications. Nat Rev Cancer. 2011;11:726–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Geutjes EJ, Bajpe PK, Bernards R. Targeting the epigenome for treatment of cancer. Oncogene. 2012;31:3827–44.

    Article  CAS  PubMed  Google Scholar 

  6. Bjornsson HT, Sigurdsson MI, Fallin MD, et al. Intra-individual change over time in DNA methylation with familial clustering. JAMA. 2008;299:2877–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Tsai HC, Li H, Van Neste L, et al. Transient low doses of DNA-demethylating agents exert durable antitumor effects on hematological and epithelial tumor cells. Cancer Cell. 2012;21:430–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Raynal NJ, Si J, Taby RF, et al. DNA methylation does not stably lock gene expression but instead serves as a molecular mark for gene silencing memory. Cancer Res. 2012;72:1170–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Griffiths EA, Gore SD. Epigenetic therapies in MDS and AML. Adv Exp Med Biol. 2013;754:253–83.

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Shats I, Gatza ML, Chang JT, et al. Using a stem cell-based signature to guide therapeutic selection in cancer. Cancer Res. 2011;71:1772–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Glinsky GV, Berezovska O, Glinskii AB. Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J Clin Invest. 2005;115:1503–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Carmona FJ, Villanueva A, Vidal A, et al. Epigenetic disruption of cadherin-11 in human cancer metastasis. J Pathol. 2012;228:230–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Bulk E, Hascher A, Liersch R, et al. Adjuvant therapy with small hairpin RNA interference prevents non-small cell lung cancer metastasis development in mice. Cancer Res. 2008;68:1896–904.

    Article  CAS  PubMed  Google Scholar 

  14. Yu J, Bulk E, Ji P, et al. The EPHB6 receptor tyrosine kinase is a metastasis suppressor that is frequently silenced by promoter DNA hypermethylation in non-small cell lung cancer. Clin Cancer Res. 2010;16:2275–83.

    Article  CAS  PubMed  Google Scholar 

  15. Bulk E, Sargin B, Krug U, et al. S100A2 induces metastasis in non-small cell lung cancer. Clin Cancer Res. 2009;15:22–9.

    Article  CAS  PubMed  Google Scholar 

  16. Bisping G, Wenning D, Kropff M, et al. Bortezomib, dexamethasone, and fibroblast growth factor receptor 3-specific tyrosine kinase inhibitor in t(4;14) myeloma. Clin Cancer Res. 2009;15:520–31.

    Article  CAS  PubMed  Google Scholar 

  17. Kulimova E, Oelmann E, Bisping G, et al. Growth inhibition and induction of apoptosis in acute myeloid leukemia cells by new indolinone derivatives targeting fibroblast growth factor, platelet-derived growth factor, and vascular endothelial growth factor receptors. Mol Cancer Ther. 2006;5:3105–12.

    Article  CAS  PubMed  Google Scholar 

  18. Meissner A, Mikkelsen TS, Gu H, et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature. 2008;454:766–70.

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Schoofs T, Rohde C, Hebestreit K, et al. DNA methylation changes are a late event in acute promyelocytic leukemia and coincide with loss of transcription factor binding. Blood. 2013;121:178–87.

    Article  CAS  PubMed  Google Scholar 

  20. Fujita PA, Rhead B, Zweig AS, et al. The UCSC Genome Browser database: update 2011. Nucleic Acids Res. 2011;39:D876–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–2.

    Article  Google Scholar 

  22. Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics. 2011;27:1571–2.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Hebestreit K, Dugas M, Klein HU. Detection of significantly differentially methylated regions in targeted bisulfite sequencing data. Bioinformatics. 2013;29:1647–53.

    Article  CAS  PubMed  Google Scholar 

  24. Hong F, Breitling R, McEntee CW, et al. RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis. Bioinformatics. 2006;22:2825–57.

    Article  CAS  PubMed  Google Scholar 

  25. Yamamoto G, Nannya Y, Kato M, et al. Highly sensitive method for genomewide detection of allelic composition in nonpaired, primary tumor specimens by use of Affymetrix single-nucleotide-polymorphism genotyping microarrays. Am J Hum Genet. 2007;81:114–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Thoennissen NH, Krug UO, Lee DH, et al. Prevalence and prognostic impact of allelic imbalances associated with leukemic transformation of Philadelphia chromosome-negative myeloproliferative neoplasms. Blood. 2010;115:2882–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Rius M, Stresemann C, Keller D, et al. Human concentrative nucleoside transporter 1-mediated uptake of 5-azacytidine enhances DNA demethylation. Mol Cancer Ther. 2009;8:225–31.

    Article  CAS  PubMed  Google Scholar 

  28. Rosenbloom KR, Dreszer TR, Pheasant M, et al. ENCODE whole-genome data in the UCSC Genome Browser. Nucleic Acids Res. 2010;38:D620–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Thurman RE, Rynes E, Humbert R, et al. The accessible chromatin landscape of the human genome. Nature. 2012;489:75–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366:883–92.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Wei Han.

Additional information

Shou-Ping Dai and Chao Xie have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, SP., Xie, C., Ding, N. et al. Targeted inhibition of genome-wide DNA methylation analysis in epigenetically modulated phenotypes in lung cancer. Med Oncol 32, 176 (2015). https://doi.org/10.1007/s12032-015-0615-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-015-0615-x

Keywords

Navigation