Skip to main content

Advertisement

Log in

Increased Sushi repeat-containing protein X-linked 2 is associated with progression of colorectal cancer

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Sushi repeat-containing protein X-linked 2 (SRPX2) is a novel chondroitin sulfate proteoglycan overexpressed in gastrointestinal cancer. Its role in tumor biology remains unknown. The aim of this study was to investigate the expression of SRPX2 in colorectal cancer and its potential association with cancer progression. The expression of SRPX2 and its clinicopathological significance was evaluated using immunohistochemistry in a tissue microarray including 88 colon cancer and pairing normal tissues. The impact of SRPX2 on behavior of colorectal cancer cells and possible mechanism was explored using gene transfection and silencing. Strong staining of SRPX2 was noted in 71 (80.7 %) of 88 colon cancer specimen and 30 (34.1 %) of 88 adjacent normal tissues (P < 0.001). The expression of SRPX2 was significantly correlated with histological differentiation grade (P = 0.003), infiltration depth (P = 0.003), and clinical stage (P = 0.006). The expression of SRPX2 was significantly higher in HCT116 than in HT29 and SW480 cells. Suppression of endogenous SRPX2 expression by small interfering ribonucleic acid (siRNA) in HCT116 cells resulted in significant reduction in the ability of cell proliferation, adhesion, migration, and invasion. Up-regulation of endogenous SRPX2 in SW480 cells significantly promoted the migration and invasion of SW480 cells. In addition, inhibition of SRPX2 by siRNA led to notable down-regulation of β-catenin, matrix metalloproteinase (MMP)-2, and MMP-9. These findings indicate that overexpressed SRPX2 exerts an oncogenic role in colorectal cancer. SRPX2 may promote the invasion of colorectal cancer through MMP-2 and MMP-9 modulated by Wnt/β-catenin pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Brenner H, Kloor M, Pox CP. Colorectal cancer. Lancet. 2014;383(9927):1490–502.

    Article  PubMed  Google Scholar 

  2. Lu PF, Weaver VM, Werb Z, et al. The extracellular matrix: a dynamic niche in cancer progression. JCB. 2012;196(4):395–406.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Ricciardelli C, Mayne K, Sykes PJ, et al. Elevated stromal chondroitin sulfate glycosaminoglycan predicts progression in early-stage prostate cancer. Clin Cancer Res. 1997;3(6):983–92.

    CAS  PubMed  Google Scholar 

  4. Pothacharoen P, Siriaunkgul S, Ong-Chai S, et al. Raised serum chondroitin sulfate epitope level in ovarian epithelial cancer. J Biochem. 2006;140(4):517–24.

    Article  CAS  PubMed  Google Scholar 

  5. Olsen EB, Trier K, Eldov K, et al. Glycosaminoglycans in human breast cancer. Acta Obstet Gynecol Scand. 1988;67(6):539–42.

    Article  CAS  PubMed  Google Scholar 

  6. Iida J, Wilhelmson K, Ng J, et al. Cell surface chondroitin sulfate glycosaminoglycan in melanoma: role in the activation of pro-MMP-2 (pro-gelatinase A). Biochem J. 2007;403:553–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Dwyer CA, Bi WL, Viapiano MS, et al. Brevican knockdown reduces late-stage glioma tumor aggressiveness. J Neurooncol. 2014;120(1):63–72.

    Article  CAS  PubMed  Google Scholar 

  8. Basappa, Murugan S, Sugahara KN, et al. Involvement of chondroitin sulfate E in the liver tumor focal formation of murine osteosarcoma cells. Glycobiology. 2009;19(7):735–42.

    Article  CAS  PubMed  Google Scholar 

  9. Jia XL, Li SY, Dang SS, et al. Increased expression of chondroitin sulphate proteoglycans in rat hepatocellular carcinoma tissues. World J Gastroenterol. 2012;18(30):3962.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. de Wit M, Belt EJ, Delis-van Diemen PM, et al. Lumican and versican are associated with good outcome in stage II and III colon cancer. Ann Surg Oncol. 2013;20(Suppl 3):S348–59.

    Article  PubMed  Google Scholar 

  11. Mukaratirwa S, Van Ederen AM, Gruys E, et al. Versican and hyaluronan expression in canine colonic adenomas and carcinomas: relation to malignancy and depth of tumour invasion. J Comp Pathol. 2004;131(4):259–70.

    Article  CAS  PubMed  Google Scholar 

  12. Yang W, Yee AJ. Versican V2 isoform enhances angiogenesis by regulating endothelial cell activities and fibronectin expression. FEBS Lett. 2013;587(2):185–92.

    Article  CAS  PubMed  Google Scholar 

  13. Du WW, Fang L, Yang X, et al. The role of versican in modulating breast cancer cell self-renewal. Mol Cancer Res. 2013;11(5):443–55.

    Article  CAS  PubMed  Google Scholar 

  14. Kurosawa H, Goi K, Inukai T, et al. Two candidate downstream target genes for E2A-HLF. Blood. 1999;93(1):321–32.

    CAS  PubMed  Google Scholar 

  15. Tanaka K, Arao T, Tamura D, et al. SRPX2 is a novel chondroitin sulfate proteoglycan that is overexpressed in gastrointestinal cancer. PLoS One. 2012;7(1):e27922.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Tanaka K, Arao T, Maegawa M, et al. SRPX2 is overexpressed in gastric cancer and promotes cellular migration and adhesion. Int J Cancer. 2009;124(5):1072–80.

    Article  CAS  PubMed  Google Scholar 

  17. Yamada T, Oshima T, Yoshihara K, et al. Impact of overexpression of Sushi repeat-containing protein X-linked 2 gene on outcomes of gastric cancer. J Surg Oncol. 2014;109(8):836–40.

    Article  CAS  PubMed  Google Scholar 

  18. Øster B, Linnet L, Christensen LL, et al. Non-CpG island promoter hypomethylation and miR-149 regulate the expression of SRPX2 in colorectal cancer. Int J Cancer. 2013;132(10):2303–15.

    Article  PubMed  Google Scholar 

  19. Liu KL, Zhou Y, Wu J. Construction of a eukaryotic vector expressing SRPX2 and its expression in cell line SW480. Shijie Huaren Xiaohua Zazhi. 2014;22(18):2553–8. doi:10.11569/wcjd.v22.i18.2553 (A Chinese Journal).

    CAS  Google Scholar 

  20. Royer-Zemmour B, Ponsole-Lenfant M, Gara H, et al. Epileptic and developmental disorders of the speech cortex: ligand/receptor interaction of wild-type and mutant SRPX2 with the plasminogen activator receptor uPAR. Hum Mol Genet. 2008;17(23):3617–30.

    Article  CAS  PubMed  Google Scholar 

  21. Miljkovic-Licina M, Hammel P, Garrido-Urbani S, et al. Sushi repeat protein X-linked 2, a novel mediator of angiogenesis. FASEB J. 2009;23(12):4105–16.

    Article  CAS  PubMed  Google Scholar 

  22. Ishiwata T, Fujii T, Ishiwata S, et al. Effect of morpholino antisense oligonucleotide against lumican mRNA in human embryonic kidney (HEK) 293 cells. Pathol Int. 2004;54(2):77–81.

    Article  CAS  PubMed  Google Scholar 

  23. Nikitovic D, Berdiaki A, Zafiropoulos A, et al. Lumican expression is positively correlated with the differentiation and negatively with the growth of human osteosarcoma cells. FEBS J. 2008;275(2):350–61.

    Article  CAS  PubMed  Google Scholar 

  24. Yamamoto T, Matsuda Y, Kawahara K, et al. Secreted 70 kDa lumican stimulates growth and inhibits invasion of human pancreatic cancer. Cancer Lett. 2012;320(1):31–9.

    Article  CAS  PubMed  Google Scholar 

  25. Vuillermoz B, Khoruzhenko A, D’Onofrio MF, et al. The small leucine-rich proteoglycan lumican inhibits melanoma progression. Exp Cell Res. 2004;296(2):294–306.

    Article  CAS  PubMed  Google Scholar 

  26. Theocharis AD, Gialeli C, Bouris P, et al. Cell–matrix interactions: focus on proteoglycan–proteinase interplay and pharmacological targeting in cancer. FEBS J. 2014;281(22):5023–42.

    Article  CAS  PubMed  Google Scholar 

  27. Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141(1):52–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Bhattacharyya S, Feferman L, Tobacman JK. Increased expression of colonic Wnt9A through Sp1-mediated transcriptional effects involving arylsulfatase B, chondroitin-4-sulfate, and galectin-3. J Biol Chem. 2014: jbc. M114. 561589.

  29. Willis CM, Klüppel M. Chondroitin sulfate-E is a negative regulator of a pro-tumorigenic Wnt/beta-catenin-collagen 1 axis in breast cancer cells. PLoS One. 2014;9(8):e103966.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Qu B, Liu BR, Du YJ, et al. Wnt/β-catenin signaling pathway may regulate the expression of angiogenic growth factors in hepatocellular carcinoma. Oncol Lett. 2014;7(4):1175–8.

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors received support from Beijing Natural Science Foundation, No. 7133239 and Senior Talents Training Program of Beijing Health Care System, No. 2011-RC1.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K.L., Wu, J., Zhou, Y. et al. Increased Sushi repeat-containing protein X-linked 2 is associated with progression of colorectal cancer. Med Oncol 32, 99 (2015). https://doi.org/10.1007/s12032-015-0548-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-015-0548-4

Keywords

Navigation