Skip to main content

Advertisement

Log in

Expression analysis of B-Raf oncogene in V600E-negative benign and malignant tumors of the thyroid gland: correlation with late disease onset

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

B-Raf, a member of the Raf serine/threonine kinase family, is an intermediate molecule in the mitogen-activated protein kinase pathway, which relays extracellular signals from the cell membrane to the nucleus via a cascade of phosphorylation events, ultimately promoting cancer development. This pathway is usually activated in human neoplasias. The purpose of this study was to investigate the role of B-Raf in thyroid pathology. We scanned for the presence of mutations at codon 600 (V → E) of the B-Raf gene, using a PCR–RFLP assay. In tumors with no mutation (32 benign and malignant thyroid tumors) and in their adjacent normal tissue, we measured the expression levels of B-Raf gene, using a quantitative real-time PCR (qPCR) assay. B-Raf expression in V600E-negative tumors deviated from the normal pattern, since it was overexpressed in 42 % of benign samples and downregulated in 54 % of malignant specimens. Hashimoto’s thyroiditis also seemed to play an important role, since benign specimens with Hashimoto’s thyroiditis had a 2.2-fold higher B-Raf expression than samples without thyroiditis (1.71 ± 0.63 vs. 0.78 ± 0.13). Statistical analysis revealed that B-Raf deregulation postponed disease onset by more than 10 years in both benign and malignant thyroid (benign: 55.6 ± 3.9 vs. 45.3 ± 3.3, p = 0.049; malignant: 52.2 ± 3.5 vs. 33.0 ± 7.9, p = 0.020). From the above results, we deduce that in the absence of mutation activation, B-Raf overexpression or downregulation is a protective event, since it delays the development of both malignant and benign thyroid tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Davies L, Welch HG. Increasing incidence of thyroid cancer in the United States, 1973–2002. JAMA. 2006;295:2164–7.

    Article  PubMed  CAS  Google Scholar 

  2. Samaan NA, Schultz PN, Hickey RC, Goepfert H, Haynie TP, Johnston DA, et al. The results of various modalities of treatment of well differentiated thyroid carcinomas: a retrospective review of 1599 patients. J Clin Endocrinol Metab. 1992;75:714–20.

    Article  PubMed  CAS  Google Scholar 

  3. Morrison DK, Cutler RE. The complexity of Raf-1 regulation. Curr Opin Cell Biol. 1997;9:174–9.

    Article  PubMed  CAS  Google Scholar 

  4. Chong H, Vikis HG, Guan KL. Mechanisms of regulating the Raf kinase family. Cell Signal. 2003;15:463–9.

    Article  PubMed  CAS  Google Scholar 

  5. Joneson T, Bar-Sagi D. Ras effectors and their role in mitogenesis and oncogenesis. J Mol Med (Berl). 1997;75:587–93.

    Article  CAS  Google Scholar 

  6. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417:949–54.

    Article  PubMed  CAS  Google Scholar 

  7. Pollock PM, Meltzer PS. A genome-based strategy uncovers frequent BRAF mutations in melanoma. Cancer Cell. 2002;2:5–7.

    Article  PubMed  CAS  Google Scholar 

  8. Davies H, Hunter C, Smith R, Stephens P, Greenman C, Bignell G, et al. Somatic mutations of the protein kinase gene family in human lung cancer. Cancer Res. 2005;65:7591–5.

    PubMed  CAS  Google Scholar 

  9. Stephens P, Edkins S, Davies H, Greenman C, Cox C, Hunter C, et al. A screen of the complete protein kinase gene family identifies diverse patterns of somatic mutations in human breast cancer. Nat Genet. 2005;37:590–2.

    Article  PubMed  CAS  Google Scholar 

  10. Nikiforova MN, Kimura ET, Gandhi M, Biddinger PW, Knauf JA, Basolo F, et al. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab. 2003;88:5399–404.

    Article  PubMed  CAS  Google Scholar 

  11. Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. 2003;63:1454–7.

    PubMed  CAS  Google Scholar 

  12. Soares P, Trovisco V, Rocha AS, Lima J, Castro P, Preto A, et al. BRAF mutations and RET/PTC rearrangements are alternative events in the etiopathogenesis of PTC. Oncogene. 2003;22:4578–80.

    Article  PubMed  CAS  Google Scholar 

  13. Fukushima T, Suzuki S, Mashiko M, Ohtake T, Endo Y, Takebayashi Y, et al. BRAF mutations in papillary carcinomas of the thyroid. Oncogene. 2003;22:6455–7.

    Article  PubMed  CAS  Google Scholar 

  14. Namba H, Nakashima M, Hayashi T, Hayashida N, Maeda S, Rogounovitch TI, et al. Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers. J Clin Endocrinol Metab. 2003;88:4393–7.

    Article  PubMed  CAS  Google Scholar 

  15. Xing M. BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr Rev. 2007;28:742–62.

    Article  PubMed  CAS  Google Scholar 

  16. Malumbres M, Barbacid M. RAS oncogenes: the first 30 years. Nat Rev Cancer. 2003;3:459–65.

    Article  PubMed  CAS  Google Scholar 

  17. Xing M, Westra WH, Tufano RP, Cohen Y, Rosenbaum E, Rhoden KJ, et al. BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer. J Clin Endocrinol Metab. 2005;90:6373–9.

    Article  PubMed  CAS  Google Scholar 

  18. Liu RT, Chen YJ, Chou FF, Li CL, Wu WL, Tsai PC, et al. No correlation between BRAFV600E mutation and clinicopathological features of papillary thyroid carcinomas in Taiwan. Clin Endocrinol (Oxf). 2005;63:461–6.

    Article  Google Scholar 

  19. Kim TY, Kim WB, Song JY, Rhee YS, Gong G, Cho YM, et al. The BRAF mutation is not associated with poor prognostic factors in Korean patients with conventional papillary thyroid microcarcinoma. Clin Endocrinol (Oxf). 2005;63:588–93.

    Article  CAS  Google Scholar 

  20. Salvatore G, Giannini R, Faviana P, Caleo A, Migliaccio I, Fagin JA, et al. Analysis of BRAF point mutation and RET/PTC rearrangement refines the fine-needle aspiration diagnosis of papillary thyroid carcinoma. J Clin Endocrinol Metab. 2004;89:5175–80.

    Article  PubMed  CAS  Google Scholar 

  21. Moretti F, Nanni S, Pontecorvi A. Molecular pathogenesis of thyroid nodules and cancer. Baillieres Best Pract Res Clin Endocrinol Metab. 2000;14:517–39.

    Article  PubMed  CAS  Google Scholar 

  22. Kiaris H, Spandidos D. Analysis of h-ras, k-ras and N-ras genes for expression, mutation and amplification in laryngeal tumors. Int J Oncol. 1995;7:75–80.

    PubMed  CAS  Google Scholar 

  23. Arif S, Blanes A, Diaz-Cano SJ. Hashimoto’s thyroiditis shares features with early papillary thyroid carcinoma. Histopathology. 2002;41:357–62.

    Article  PubMed  CAS  Google Scholar 

  24. Nikiforov YE. RET/PTC Rearrangement—a link between Hashimoto’s thyroiditis and thyroid cancer…or not. J Clin Endocrinol Metab. 2006;91:2040–2.

    Article  PubMed  CAS  Google Scholar 

  25. Perea J, Alvaro E, Rodriguez Y, Gravalos C, Sanchez-Tome E, Rivera B, et al. Approach to early-onset colorectal cancer: clinicopathological, familial, molecular and immunohistochemical characteristics. World J Gastroenterol. 2010;16:3697–703.

    Article  PubMed  Google Scholar 

  26. Lange EM, Salinas CA, Zuhlke KA, Ray AM, Wang Y, Lu Y, et al. Early onset prostate cancer has a significant genetic component. Prostate. 2012;72:147–56.

    Article  PubMed  Google Scholar 

  27. Lalloo F, Varley J, Moran A, Ellis D, O’Dair L, Pharoah P, et al. BRCA1, BRCA2 and TP53 mutations in very early-onset breast cancer with associated risks to relatives. Eur J Cancer. 2006;42:1143–50.

    Article  PubMed  CAS  Google Scholar 

  28. Johnson L, Mercer K, Greenbaum D, Bronson RT, Crowley D, Tuveson DA, et al. Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature. 2001;410:1111–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demetrios A. Spandidos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Derdas, S.P., Soulitzis, N., Balis, V. et al. Expression analysis of B-Raf oncogene in V600E-negative benign and malignant tumors of the thyroid gland: correlation with late disease onset. Med Oncol 30, 336 (2013). https://doi.org/10.1007/s12032-012-0336-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-012-0336-3

Keywords

Navigation