Skip to main content

Advertisement

Log in

Prediction and identification of B cell epitopes derived from EWS/FLI-l fusion protein of Ewing’s sarcoma

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

To predict B cell epitope of Ewing’s sarcoma EWS/FLI-l fusion protein and to analyze its antigenicity and immunogenicity. Comprehensive algorithms were applied to predict the possible B cell epitopes of EWS/FLI-l fusion protein. High-performance liquid chromatography (HPLC) and mass spectrometry (MS) analysis were performed to identify the synthesized epitope peptides, ELISA assays and Western blot to detect the antigenicity, and the immunogenicity of epitope peptides. Three B cell epitopes were screened out, and HPLC and MS analysis confirmed all three synthesized epitope peptides were demandable. ELISA assays verified all three epitope peptides could prime intense antigen–antibody reaction and induce ideal antibody titers after immunization to the New Zealand white rabbit. However, Western blot confirmed that antiserum of one of these epitope peptides could not recognize EWS/FLI-1 protein. Two B cell epitopes, PQDGNKPTETSQPQ and DPDEVARRWGQRKS, derived from EWS/FLI-l protein, are identified to have potential antigenicity and immunogenicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Grier HE, Krailo MD, Tarbell NJ, et al. Addition of ifosfamide and etoposide to standard chemotherapy for Ewing’s sarcoma and primitive neuroectodermal tumor of bone. N Engl J Med. 2003;348:694–701.

    Article  PubMed  CAS  Google Scholar 

  2. Barker LM, Pendergrass TW, Sanders JE, et al. Survival after recurrence of Ewing’s sarcoma family of tumors. J Clin Oncol. 2005;23:4354–62.

    Article  PubMed  Google Scholar 

  3. Rodriguez-Galindo C, Spunt SL, Pappo AS. Treatment of Ewing sarcoma family of tumors: current status and outlook for the future. Med Pediatr Oncol. 2003;40:276–87.

    Article  PubMed  Google Scholar 

  4. Chansky HA, Barahmand-Pour F, Mei Q, et al. Targeting of EWS/FLI-1 by RNA interference attenuates the tumor phenotype of Ewing’s sarcoma cells in vitro. J Orthop Res. 2004;22:910–7.

    Article  PubMed  CAS  Google Scholar 

  5. Hu-Lieskovan S, Heidel JD, Bartlett DW, et al. Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing’s sarcoma. Cancer Res. 2005;65:8984–92.

    Article  PubMed  CAS  Google Scholar 

  6. Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat Med. 2004;10(9):909–15.

    Article  PubMed  CAS  Google Scholar 

  7. Qi CJ, Ning YL, Han YS, et al. Autologous dendritic cell vaccine for estrogen receptor (ER)/progestin receptor (PR) double-negative breast cancer. Cancer Immunol Immunother. 2012. doi: 10.1007/s00262-011-1192-2.

  8. Onishi H, Morisaki T, Baba E, et al. Long-term vaccine therapy with autologous whole tumor cell-pulsed dendritic cells for a patient with recurrent rectal carcinoma. Anticancer Res. 2011;31(11):3995–4005.

    PubMed  CAS  Google Scholar 

  9. Kantoff PW, Higano CS, Shore ND, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363(5):411–22.

    Article  PubMed  CAS  Google Scholar 

  10. de Alava E, Gerald WL. Molecular biology of the Ewing’s sarcoma/primitive neuroectodermal tumor family. J Clin Oncol. 2000;18:204–13.

    PubMed  Google Scholar 

  11. Kovar H. Ewing’s sarcoma and peripheral primitive neuroectodermal tumors after their genetic union. Curr Opin Oncol. 1998;10:334–42.

    Article  PubMed  CAS  Google Scholar 

  12. Le Deley MC, Delattre O, Schaefer KL, et al. Impact of EWS-ETS fusion type on disease progression in Ewing’s sarcoma/peripheral primitive neuroectodermal tumor: prospective results from the cooperative Euro-E.W.I.N.G. 99 trial. J Clin Oncol. 2010;28(12):1982–8.

    Article  PubMed  Google Scholar 

  13. Arvand A, Denny CT. Biology of EWS/ETS fusions in Ewing’s family tumors. Oncogene. 2001;20(40):5747–54.

    Article  PubMed  CAS  Google Scholar 

  14. Goldsby RA, Kindt TJ, Kuby J, et al. Immunology. 5th ed. New York: W. H. Freeman; 2002.

    Google Scholar 

  15. Meyer-Wentrup F, Richter G, Burdach S. Identification of an immunogenic EWS-FLI1-derived HLA-DR-restricted T helper cell epitope. Pediatr Hematol Oncol. 2005;22:297–308.

    Article  PubMed  CAS  Google Scholar 

  16. Zhao J, Huang L, Chen W, et al. Prediction, screening and identification of HLA-A2.1-restricted CTL epitopes derived from Ewing’s sarcoma EWS-FLI1 fusion protein. The Journal of Immuology. 2010;26:10–5. (Chinese).

    CAS  Google Scholar 

  17. Cao K, Huang L, Lin ZH, et al. Screening of HLA-A2.1-restricted CTL epitopes derived from Ewing’s sarcoma EWS-FLI1 fusion protein by using molecular simulation. Acta Chim Sinica. 2010;68:1277–84.

    CAS  Google Scholar 

  18. Garnier J, Robson B. The GOR method for predicting secondary structures in proteins. In: Fasman GD, editor. Prediction of Protein Structure and the Principles of Protein Conformation. New York: Plenum Press; 1989. p. 417–65.

    Chapter  Google Scholar 

  19. Chou PY, Fasman GD. Empirical predictions of protein conformation. Annu Rev Biochem. 1978;47:251–76.

    Article  PubMed  CAS  Google Scholar 

  20. Eisenberg D. The discovery of the alpha-helix and beta-sheet, the principal structural features of proteins. Proc Natl Acad Sci. 2003;100(20):11207–10.

    Article  PubMed  CAS  Google Scholar 

  21. Jameson BA, Wolf H. The antigenic index: a novel algorithm for predicting antigenic determinants. Comput Appl Biosci. 1988;4:181–6.

    PubMed  CAS  Google Scholar 

  22. Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982;157(1):105–32.

    Article  PubMed  CAS  Google Scholar 

  23. Emmini EA, Hughes JV, Perlow DS, et al. Induction of hepatitis a virus-neutralizing antibody by a virus-specific synthetic peptide. J Viorol. 1985;55(3):836–9.

    Google Scholar 

  24. Karplus PA, Schulz GE. Prediction of chain flexibility in proteins. Naturwissenschaften. 1985;72(4):212–3.

    Article  CAS  Google Scholar 

  25. Chen W, Huang L, Huang S, et al. The Construction And Identification Of Prokaryotic Expression Vector pQE30-EWS-FLI1. J Chongqing Med Univers. 2010;35:645–8. (Chinese).

    Google Scholar 

  26. Banchereau J, Palucka AK. Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol. 2005;5(4):296–306.

    Article  PubMed  CAS  Google Scholar 

  27. Ackermann B, Tröger A, Glouchkova L, et al. Characterization of CD34 + progenitor-derived dendritic cells pulsed with tumor cell lysate for a vaccination strategy in children with malignant solid tumors and a poor prognosis. Klin Padiatr. 2004;216(3):176–82.

    Article  PubMed  CAS  Google Scholar 

  28. Tang S, Guo W, Guo Y, et al. In vitro antitumor immune response induced by fusion of dendritic cells and Ewing’s sarcoma cells. Zhonghua Wai Ke Za Zhi. 2005;43(12):803–6. (Chinese).

    Google Scholar 

  29. Qu HY, Guo W, He XJ. Construction of recombinant adenoviral vector containing gene of EWS-FLI1 and antitumor immunity of its modified dentritic cell in vitro. Beijing Da Xue Xue Bao. 2006;38(6):623–7. (Chinese).

    Google Scholar 

  30. Guo W, Guo Y, Tang S, et al. Dendritic cell-Ewing’s sarcoma cell hybrids enhance antitumor immunity. Clin Orthop Relat Res. 2008;466(9):2176–83.

    Article  PubMed  Google Scholar 

  31. Zaiss AK, Liu Q, Bowen GP, et al. Differential activation of innate immune responses by adenovirus and adeno-associated virus vectors. J Virol. 2002;76(9):4580–90.

    Article  PubMed  CAS  Google Scholar 

  32. Nardin EH, Calvo-Calle JM, Oliveira GA, et al. A totally synthetic polyoxime malaria vaccine containing plasmodium falciparum B cell and universal T cell epitopes elicits immune responses in volunteers of diverse HLA types. J Immunol. 2001;166:481–9.

    PubMed  CAS  Google Scholar 

  33. Dakappagari NK, Pyles J, Parihar R, et al. A chimeric multi-human epidermal growth factor receptor-2 B cell epitope peptide vaccine mediates superior antitumor responses. J Immunol. 2003;170:4242–53.

    PubMed  CAS  Google Scholar 

  34. Valmori D, Souleimanian NE, Hesdorffer CS, et al. Identification of B cell epitopes recognized by antibodies specific for the tumor antigen NY-ESO-1 in cancer patients with spontaneous immune responses. Clin Immunol. 2005;117:24–30.

    Article  PubMed  CAS  Google Scholar 

  35. Gaseitsiwe S, Valentini D, Mahdavifar S, et al. Peptide Microarray-Based Identification of Mycobacterium tuberculosis Epitope Binding to HLA-DRB1*0101, DRB1*1501, and DRB1*0401. Clin Vaccine Immunol. 2009;17(1):168–75.

    Article  PubMed  Google Scholar 

  36. Linnebacher M, Lorenz P, Koy C, et al. Clonality characterization of natural epitope-specific antibodies against the tumor-related antigen topoisomerase IIa by peptide chip and proteome analysis: a pilot study with colorectal carcinoma patient samples. Anal Bioanal Chem. 2012;403(1):227–38.

    Article  PubMed  CAS  Google Scholar 

  37. Paes C, Ingalls J, Kampani K, et al. Atomic-Level Mapping of Antibody Epitopes on a GPCR. J Am Chem Soc. 2009;131(20):6952–4.

    Article  PubMed  CAS  Google Scholar 

  38. Zhang ZW, Zhang YG, Wang YL, et al. Screening and identification of B cell epitopes of structural proteins of foot-and-mouth disease virus serotype Asia1. Vet Microbiol. 2010;140(1–2):25–33.

    Article  PubMed  CAS  Google Scholar 

  39. Yang JM, Wang HJ, Du L, et al. Screening and identification of novel B cell epitopes in human heparanase and their anti-invasion property for hepatocellular carcinoma. Cancer Immunol Immunother. 2009;58(9):1387–96.

    Article  PubMed  CAS  Google Scholar 

  40. Cao K, Huang L, An H, et al. Prediction for secondary structure and B cell epitopes of fusion region in EWS-FLI1 protein of Ewing’s sarcoma. J Chin immunol. 2008;24:11–5. (Chinese).

    Google Scholar 

  41. Staege MS, Gorelov V, Bulankin A, et al. Stable transgenic expression of IL-2 and HSV1-tk by single and fusion tumor cell lines bearing EWS/FLI-1 chimeric genes. Pediatr Hematol Oncol. 2003;20:119–40.

    Article  PubMed  CAS  Google Scholar 

  42. Loughran ST, Walls D. Purification of poly-histidine-tagged proteins. Methods Mol Biol. 2011;681:311–35.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Natural Science Foundation of China (grants No. 30760254 and 81060221), the Natural Science Foundation of Jiangxi Province (grants No. 2009GQY0204), and the Education Department of Jiangxi Province(grants No. GJJ08076).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Cao.

Additional information

Huiwen Liu and Lu Huang are equally contributed to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Huang, L., Luo, J. et al. Prediction and identification of B cell epitopes derived from EWS/FLI-l fusion protein of Ewing’s sarcoma. Med Oncol 29, 3421–3430 (2012). https://doi.org/10.1007/s12032-012-0243-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12032-012-0243-7

Keywords

Navigation