Skip to main content

Advertisement

Log in

Translational research in complex etiopathogenesis and therapy of hematological malignancies: the specific role of tyrosine kinases signaling and inhibition

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

During the recent genomics and proteomics era, high-resolution, genome-wide approaches have revealed numerous promising new drug targets and disease biomarkers, accelerating and emphasizing the need for targeted molecular therapy compounds. Significant progress has been made in understanding the pathogenesis of hematological malignancies there by, revealing new drug targets. Introduction of multiple new technologies in cancer research have significantly improved the drug discovery process, leading to key success in targeted cancer therapeutics, including tyrosine kinase inhibitors. The studies of receptor tyrosine kinases and their role in malignant transformation are already translated from the preclinical level (cell-based and animal models) to clinical studies, enabling the more complete understanding of tumor cell biology and improvement of tumor therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Landry Y, Gies JP. Drugs and their molecular targets: an updated overview. Fundam Clin Pharmacol. 2008;22:1–18. doi:10.1111/j.1472-8206.2007.00548.x.

    Article  CAS  PubMed  Google Scholar 

  2. Hughes T, et al. Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood. 2006;108:28–37. doi:10.1182/blood-2006-01-0092.

    Article  CAS  PubMed  Google Scholar 

  3. Strebhardt K, Ullrich A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nature Rev Cancer. 2008;8:473–80. doi:10.1038/nrc2394.

    Article  CAS  Google Scholar 

  4. Thomas RK, et al. High-throughput oncogene mutation profiling in human cancer. Nat Genet. 2007;39:347–51. doi:10.1038/ng1975.

    Article  CAS  PubMed  Google Scholar 

  5. Quintas-Cardama A, Kantarjian H, Cortes J. Flying under the radar: the new waveof BCR–ABL inhibitors. Nat Rev Drug Discov. 2007;6:834–48. doi:10.1038/nrd2324.

    Article  CAS  PubMed  Google Scholar 

  6. Hehlmann R, Hochhaus A, Baccarani M. Chronic myeloid leukaemia. Lancet. 2007;370:342–50. doi:10.1016/S0140-6736(07)61165-9.

    Article  CAS  PubMed  Google Scholar 

  7. Wernig G, et al. Efficacy of TG101348, a selective JAK2 inhibitor, in treatment of a murine model of JAK2V617F-induced polycythemia vera. Cancer Cell. 2008;13:311–20. doi:10.1016/j.ccr.2008.02.009.

    Article  CAS  PubMed  Google Scholar 

  8. Geron I, et al. Selective inhibition of JAK2-driven erythroid differentiation of polycythemia vera progenitors. Cancer Cell. 2008;13:321–30. doi:10.1016/j.ccr.2008.02.017.

    Article  CAS  PubMed  Google Scholar 

  9. Neviani P, et al. FTY720, a new alternative for treating blast crisis chronic myelogenous leukemia and Philadelphia chromosome-positive acute lymphocytic leukemia. J Clin Invest. 2007;117:2408–21. doi:10.1172/JCI31095.

    Article  CAS  PubMed  Google Scholar 

  10. Arora A, Scholar EM. Role of tyrosine kinase inhibitors in cancer therapy. J Pharmacol Exp Ther. 2005;315:971–9. doi:10.1124/jpet.105.084145.

    Article  CAS  PubMed  Google Scholar 

  11. Apperley JF. Mechanisms of resistance to imatinib in chronic myeloid leukaemia. Lancet. 2007;8:1018–29. doi:10.1016/S1470-2045(07)70342-X.

    Article  CAS  Google Scholar 

  12. Force T, Krause DS, Van Etten RA. Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nat Rev Cancer. 2007;7:332–44. doi:10.1038/nrc2106.

    Article  CAS  PubMed  Google Scholar 

  13. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006;160:1–40. doi:10.1016/j.cbi.2005.12.009.

    Article  CAS  PubMed  Google Scholar 

  14. Fabbro D, Parkinson D, Matter A. Protein tyrosine kinase inhibitors: new treatment modalities? Curr Opin Pharmacol. 2002;2:374–81. doi:10.1016/S1471-4892(02)00179-0.

    Article  CAS  PubMed  Google Scholar 

  15. Levitzki A, Mishani E. Tyrphostins and other tyrosine kinase inhibitors. Annu Rev Biochem. 2006;75:93–109. doi:10.1146/annurev.biochem.75.103004.142657.

    Article  CAS  PubMed  Google Scholar 

  16. Meyer J, et al. Remarkable leukemogenic potency and quality of a constitutively active neurotrophin receptor, DTrkA. Leukemia. 2007;21:2171–80. doi:10.1038/sj.leu.2404882.

    Article  CAS  PubMed  Google Scholar 

  17. Doepfner KT, Boller D, Arcaro A. Targeting receptor tyrosine kinase signaling in acute myeloid leukemia. Crit Rev Oncol Hematol. 2007;63:215–30. doi:10.1016/j.critrevonc.2007.05.005.

    Article  PubMed  Google Scholar 

  18. Martelli AM, Tazzari PL, Evangelisti C, Chiarini F, Blalock WL, Billi AM, et al. Targeting the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin module for acute myelogenous leukemia therapy: from bench to bedside. Curr Med Chem. 2007;14:2009–23. doi:10.2174/092986707781368423.

    Article  CAS  PubMed  Google Scholar 

  19. Nishioka C, Ikezoe T, Yang J, Koeffler HP, Yokoyama A. Blockade of mTOR signaling potentiates the ability of histone deacetylase inhibitor to induce growth arrest and differentiation of acute myelogenous leukemia cells. Leukemia. 2008; doi:10.1038/leu.2008.243.

  20. Matsumura I, Mizuki M, Kanakura Y. Roles for deregulated receptor tyrosine kinases and their downstream signaling molecules in hematologic malignancies. Cancer Sci. 2008;99:479–85. doi:10.1111/j.1349-7006.2007.00717.x.

    Article  CAS  PubMed  Google Scholar 

  21. Ning ZQ, Li J, Arceci RJ. Signal transducer and activator of transcription 3 activation is required for Asp (816) mutant c-kit-mediated cytokine-independent survival and proliferation in human leukemia cells. Blood. 2001;97:3559–67. doi:10.1182/blood.V97.11.3559.

    Article  CAS  PubMed  Google Scholar 

  22. Blagosklony M. Prospective strategies to enforce selectively cell death in cancer cells. Oncogene. 2004;23:2967–75. doi:10.1038/sj.onc.1207520.

    Article  Google Scholar 

  23. Weisberg E, Manley PW, Cowan-Jacob SW, Hochhaus A, Griffin JD. Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia. Nat Rev Cancer. 2007;7:345–56. doi:10.1038/nrc2126.

    Article  CAS  PubMed  Google Scholar 

  24. Chow LQM, Eckhardt SG. Sunitinib: from rational design to clinical efficacy. J Clin Oncol. 2007;25:884–96. doi:10.1200/JCO.2006.06.3602.

    Article  CAS  PubMed  Google Scholar 

  25. O’Farrell AM, et al. SU11248 is a novel FLT3 tyrosine kinase inhibitor with potent activity in vitro and in vivo. Blood. 2003;101:3597–605. doi:10.1182/blood-2002-07-2307.

    Article  PubMed  Google Scholar 

  26. Schittenhelm MM, et al. Dasatinib (BMS-354825), a dual SRC/ABL kinase inhibitor, inhibits the kinase activity of wild-type, juxtamembrane, and activation loop mutant KIT isoforms associated with human malignancies. Cancer Res. 2006;66:473–81. doi:10.1158/0008-5472.CAN-05-2050.

    Article  CAS  PubMed  Google Scholar 

  27. Quintas-Cardama A, Cortes J. Nilotinib: a phenylamino-pyrimidine derivative with activity against BCR-ABL, KIT and PDGFR kinases. Future Oncol. 2008;4:611–21. doi:10.2217/14796694.4.5.611.

    Article  CAS  PubMed  Google Scholar 

  28. White DL, Saunders VA, Quinn SR, Manley PW, Hughes TP. Imatinib increases the intracellular concentration of nilotinib, which may explain the observed synergy between these drugs. Blood. 2007;109:3609–10. doi:10.1182/blood-2006-11-058032.

    Article  CAS  PubMed  Google Scholar 

  29. Hu S, et al. Comparison of antitumor effects on multitargeted tyrosine kinase inhibitors in acute myelogenous leukemia. Cancer Ther. 2008;7:1110–20. doi:10.1158/1535-7163.MCT-07-2218.

    Article  CAS  Google Scholar 

  30. Knapper S, Mills KI, Gilkes AF, Austin SJ, Walsh V, Burnett AK. The effects of lestaurtinib (CEP701) and PKC412 on primary AML blasts: the induction of cytotoxicity varies with dependence on FLT3 signaling in both FLT3-mutated and wild-type cases. Blood. 2006;108:3494–503. doi:10.1182/blood-2006-04-015487.

    Article  CAS  PubMed  Google Scholar 

  31. Milojkovic D, Apperley J. State-of-the-art in the treatment of chronic myeloid leukaemia. Curr Opin Oncol. 2008;20:112–21.

    Article  CAS  PubMed  Google Scholar 

  32. Hochhaus A, et al. Dasatinib induces durable cytogenetic responses in patients with chronic myelogenous leukemia in chronic phase with resistance or intolerance to imatinib. Leukemia. 2008;22:1200–6. doi:10.1038/leu.2008.84.

    Article  CAS  PubMed  Google Scholar 

  33. Apperley JF. Mechanisms of resistance to imatinib in chronic myeloid leukaemia. Lancet. 2007;8:1116–28. doi:10.1016/S1470-2045(07)70379-0.

    Article  CAS  Google Scholar 

  34. Cao X, Tanis KQ, Koleske AJ, Colicelli J. Enhancement of ABL kinase catalytic efficiency by a direct binding regulator is independent of other regulatory mechanisms. J Biol Chem. 2008;283:31401–7. doi:10.1074/jbc.M804002200.

    Article  CAS  PubMed  Google Scholar 

  35. Azam M, et al. Activity of dual SRC-ABL inhibitors highlights the role of BCR/ABL kinase dynamics in drug resistance. Proc Natl Acad Sci USA. 2006;103:9244–9. doi:10.1073/pnas.0600001103.

    Article  CAS  PubMed  Google Scholar 

  36. Widmer N, et al. Relationship of imatinib-free plasma levels and target phenotype with efficacy and tolerability. Br J Cancer. 2008;98:1633–40. doi:10.1038/sj.bjc.6604355.

    Article  CAS  PubMed  Google Scholar 

  37. Wang L, et al. Expression of the uptake drug transporter hOCT1 is an important clinical determinant of the response to imatinib in chronic myeloid leukemia. Clin Pharmacol Ther. 2008;83:258–64. doi:10.1038/sj.clpt.6100268.

    Article  CAS  PubMed  Google Scholar 

  38. Larson RA, et al. Imatinib pharmacokinetics and its correlation with response and safety in chronic phase chronic myeloid leukemia: a subanalysis of the IRIS study. Blood. 2008;111:4022–8. doi:10.1182/blood-2007-10-116475.

    Article  CAS  PubMed  Google Scholar 

  39. Reilly J. Receptor tyrosine kinases in normal and malignant haematopoiesis. Blood Rev. 2003;17:241–8. doi:10.1016/S0268-960X(03)00024-9.

    Article  PubMed  Google Scholar 

  40. Corell PH, Paulson RF, Wei X. Molecular regulation of receptor tyrosine kinases in hematopoietic malignancies. Gene. 2006;374:26–38. doi:10.1016/j.gene.2006.01.023.

    Article  Google Scholar 

  41. Gilliland DG. Hematologic malignancies. Curr Opin Hematol. 2001;8:189–91. doi:10.1097/00062752-200107000-00001.

    Article  CAS  PubMed  Google Scholar 

  42. Kosmider O, et al. Kit-activating mutations cooperate with Spi-1/PU.1 overexpression to promote tumorigenic progression during erythroleukemia in mice. Cancer Cell. 2005;8:467–78. doi:10.1016/j.ccr.2005.11.009.

    Article  CAS  PubMed  Google Scholar 

  43. Renneville A, et al. Cooperating gene mutations in acute myeloid leukemia: a review of the literature. Leukemia. 2008;22:915–31. doi:10.1038/leu.2008.19.

    Article  CAS  PubMed  Google Scholar 

  44. Patnaik MM, Tefferi A, Pardanani A. Kit: molecule of interest for the diagnosis and treatment of mastocytosis and other neoplastic disorders. Curr Cancer Drug Targets. 2007;7:492–503. doi:10.2174/156800907781386614.

    Article  CAS  PubMed  Google Scholar 

  45. Kindler T, et al. Sustained complete hematologic remission after administration of the tyrosine kinase inhibitor imatinib mesylate in a patient with refractory, secondary AML. Blood. 2003;101:2960–2. doi:10.1182/blood-2002-05-1469.

    Article  CAS  PubMed  Google Scholar 

  46. Smolich BD, et al. The antiangiogenic protein kinase inhibitors SU5416 and SU6668 inhibit the SCF receptor (c-kit) in a human myeloid leukemia cell line and in acute myeloid leukemia blasts. Blood. 2001;97:1413–21. doi:10.1182/blood.V97.5.1413.

    Article  CAS  PubMed  Google Scholar 

  47. Mollgard L, et al. The FLT3 inhibitor PKC412 in combination with cytostatic drugs in vitro in acute myeloid leukemia. Cancer Chemother Pharmacol. 2008;62:439–48. doi:10.1007/s00280-007-0623-4.

    Article  PubMed  Google Scholar 

  48. Tuveson DA, et al. STI571 inactivation of the gastrointestinal stromal tumor c-KIT oncoprotein: biological and clinical implications. Oncogene. 2001;20:5054–8. doi:10.1038/sj.onc.1204704.

    Article  CAS  PubMed  Google Scholar 

  49. Apperley JF, et al. Response to imatinib mesylate in patients with chronic myeloproliferative disorders with rearrangement of the platelet-derived growth factor receptor beta. N Engl J Med. 2002;347:481–7. doi:10.1056/NEJMoa020150.

    Article  CAS  PubMed  Google Scholar 

  50. De J, Zanjani R, Hibbard M, Davis BH. Immunophenotypic profile predictive of KIT activating mutations in AML1-ETO leukemia. Am J Clin Pathol. 2007;128:550–7. doi:10.1309/JVALJNL4ELQMD536.

    Article  CAS  PubMed  Google Scholar 

  51. Fernandez A, et al. Rational drug redesign to overcome drug resistance in cancer therapy: Imatinib moving target. Cancer Res. 2007;67:4028–33. doi:10.1158/0008-5472.CAN-07-0345.

    Article  CAS  PubMed  Google Scholar 

  52. Levis M, et al. A FLT3- targeted tyrosine kinase inhibitor is cytotoxic to leukaemia cells in vitro and in vivo. Blood. 2002;99:3885–91. doi:10.1182/blood.V99.11.3885.

    Article  CAS  PubMed  Google Scholar 

  53. Levis M, Brown P, Smith BD. Plasma inhibitory activity (PIA): a pharmacodynamic assay reveals insights into the basis for cytotoxic response to FLT3 inhibitors. Blood. 2006;108:3477–83. doi:10.1182/blood-2006-04-015743.

    Article  CAS  PubMed  Google Scholar 

  54. Shah NP, Sawyers CL. Mechanisms of resistance to STI571 in Philadelphia chromosome-associated leukemias. Oncogene. 2003;22:7389–95. doi:10.1038/sj.onc.1206942.

    Article  CAS  PubMed  Google Scholar 

  55. Lin P, et al. Acute myeloid leukemia harboring t(8;21)(q22;q22): a heterogeneous disease with poor outcome in a subset of patients unrelated to secondary cytogenetic aberrations. Mod Pathol. 2008;21:1029–36. doi:10.1038/modpathol.2008.92.

    Article  CAS  PubMed  Google Scholar 

  56. Komarova NL, Wodarz D. Drug resistance in cancer: principles of emergence and prevention. Proc Natl Acad Sci USA. 2005;102:9714–19. doi:10.1073/pnas.0501870102.

    Article  CAS  PubMed  Google Scholar 

  57. Levi F, Lucchini F, Negri E, Barbui T, La Vecchia C. Trends in mortality from leukemia in subsequent age groups. Leukemia. 2000;14:1980–5. doi:10.1038/sj.leu.2401915.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the bilateral project of cooperation between the Ministry of Science, Republic of Serbia and CNRS, France, grant No. 451-03-2405/2007-02/12-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karmen Stankov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stankov, K., Stankov, S. & Popović, S. Translational research in complex etiopathogenesis and therapy of hematological malignancies: the specific role of tyrosine kinases signaling and inhibition. Med Oncol 26, 437–444 (2009). https://doi.org/10.1007/s12032-008-9143-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12032-008-9143-2

Keywords

Navigation