Skip to main content
Log in

The Involvement of NR2B and tau Protein in MG132-Induced CREB Dephosphorylation

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Transcription factor cAMP response element-binding protein (CREB) plays a critical role in memory formation. Ubiquitin-proteasome system-dependent protein degradation affects the upstream signaling pathways which regulate CREB activity. However, the molecular mechanisms of proteasome inhibition on reductive CREB activity are still unclear. The current study demonstrated that MG132-inhibited proteasome activity resulted in a dose dependence of CREB dephosphorylation at Ser133 as well as decreased phosphorylation of N-methyl-d-aspartate (NMDA) receptor subunit NR2B (Tyr1472) and its tyrosine protein kinase Fyn (Tyr416). These dephosphorylations are probably caused by disturbance of expression and post-translational modifications of tau protein since tau siRNA decreased the activity of Fyn, NR2B, and CREB. To further confirm this perspective, HEK293 cells stably expressing human tau441 protein were treated with MG132 and dephosphorylations of CREB and NR2B were observed. The current research provides an alternative pathway, tau/Fyn/NR2B signaling, regulating CREB activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amadoro G, Ciotti MT, Costanzi M, Cestari V, Calissano P, Canu N (2006) NMDA receptor mediates tau-induced neurotoxicity by calpain and ERK/MAPK activation. Proc Natl Acad Sci U S A 103:2892–2897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Besche HC, Peth A, Goldberg AL (2009) Getting to first base in proteasome assembly. Cell 138:25–28

    Article  CAS  PubMed  Google Scholar 

  • Billingsley ML, Kincaid RL (1997) Regulated phosphorylation and dephosphorylation of tau protein: effects on microtubule interaction, intracellular trafficking and neurodegeneration. Biochem J 323:577–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burnouf S, Martire A, Derisbourg M, Laurent C, Belarbi K, Leboucher A, Fernandez-Gomez FJ, Troquier L, Eddarkaoui S, Grosjean ME, Demeyer D, Muhr-Tailleux A, Buisson A, Sergeant N, Hamdane M, Humez S, Popoli P, Buee L, Blum D (2013) NMDA receptor dysfunction contributes to impaired brain-derived neurotrophic factor-induced facilitation of hippocampal synaptic transmission in a tau transgenic model. Aging Cell 12:11–23

    Article  CAS  PubMed  Google Scholar 

  • Cajigas IJ, Will T, Schuman EM (2010) Protein homeostasis and synaptic plasticity. EMBO J 29:2746–2752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlezon WA Jr, Duman RS, Nestler EJ (2005) The many faces of CREB. Trends Neurosci 28:436–445

    Article  CAS  PubMed  Google Scholar 

  • Casarejos MJ, Solano RM, Gomez A, Perucho J, de Yebenes JG, Mena MA (2011) The accumulation of neurotoxic proteins, induced by proteasome inhibition, is reverted by trehalose, an enhancer of autophagy, in human neuroblastoma cells. Neurochem Int 58:512–520

    Article  CAS  PubMed  Google Scholar 

  • Chen ZJ, Sun LJ (2009) Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell 33:275–286

    Article  CAS  PubMed  Google Scholar 

  • Ciechanover A (1998) The ubiquitin-proteasome pathway: on protein death and cell life. EMBO J 17:7151–7160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuervo AM, Wong ES, Martinez-Vicente M (2010) Protein degradation, aggregation, and misfolding. Mo Disord 25(Suppl 1):S49–S54

    Article  Google Scholar 

  • Gong CX, Iqbal K (2008) Hyperphosphorylation of microtubule-associated protein tau: a promising therapeutic target for Alzheimer disease. Curr Med Chem 15:2321–2328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong CX, Liu F, Grundke-Iqbal I, Iqbal K (2005) Post-translational modifications of tau protein in Alzheimer’s disease. J Neural Transm 112:813–838

    Article  CAS  PubMed  Google Scholar 

  • Hamano T, Gendron TF, Ko LW, Yen SH (2009) Concentration-dependent effects of proteasomal inhibition on tau processing in a cellular model of tauopathy. Int J Clin Exp Pathol 2:561–573

    CAS  PubMed  PubMed Central  Google Scholar 

  • Im E, Chung KC (2016) Precise assembly and regulation of 26S proteasome and correlation between proteasome dysfunction and neurodegenerative diseases. BMB reports.

    Google Scholar 

  • Ittner LM, Ke YD, Delerue F, Bi M, Gladbach A, van Eersel J, Wolfing H, Chieng BC, Christie MJ, Napier IA, Eckert A, Staufenbiel M, Hardeman E, Gotz J (2010) Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell 142:387–397

    Article  CAS  PubMed  Google Scholar 

  • Jarome TJ, Helmstetter FJ (2013) The ubiquitin-proteasome system as a critical regulator of synaptic plasticity and long-term memory formation. Neurobiol Learn Mem 105:107–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson GV, Stoothoff WH (2004) Tau phosphorylation in neuronal cell function and dysfunction. J Cell Sci 117:5721–5729

    Article  CAS  PubMed  Google Scholar 

  • Jung T, Catalgol B, Grune T (2009) The proteasomal system. Mol Asp Med 30:191–296

    Article  CAS  Google Scholar 

  • Kida S (2012) A functional role for CREB as a positive regulator of memory formation and LTP. Exp Neurobiol 21:136–140

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee YS, Silva AJ (2009) The molecular and cellular biology of enhanced cognition. Nat Rev Neurosci 10:126–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lonze BE, Ginty DD (2002) Function and regulation of CREB family transcription factors in the nervous system. Neuron 35:605–623

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Salon M, Alonso M, Vianna MR, Viola H, Mello e Souza T, Izquierdo I, Pasquini JM, Medina JH (2001) The ubiquitin-proteasome cascade is required for mammalian long-term memory formation. Eur J Neurosci 14:1820–1826

  • Mandelkow EM, Mandelkow E (2012) Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb Perspect Med 2:a006247

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakazawa T, Komai S, Watabe AM, Kiyama Y, Fukaya M, Arima-Yoshida F, Horai R, Sudo K, Ebine K, Delawary M, Goto J, Umemori H, Tezuka T, Iwakura Y, Watanabe M, Yamamoto T, Manabe T (2006) NR2B tyrosine phosphorylation modulates fear learning as well as amygdaloid synaptic plasticity. EMBO J 25:2867–2877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oddo S (2008) The ubiquitin-proteasome system in Alzheimer’s disease. J Cell Mol Med 12:363–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rankin CA, Sun Q, Gamblin TC (2005) Pseudo-phosphorylation of tau at Ser202 and Thr205 affects tau filament formation. Mol Brain Res 138:84–93

    Article  CAS  PubMed  Google Scholar 

  • Ren QG, Liao XM, Wang ZF, Qu ZS, Wang JZ (2006) The involvement of glycogen synthase kinase-3 and protein phosphatase-2A in lactacystin-induced tau accumulation. FEBS Lett 580:2503–2511

    Article  CAS  PubMed  Google Scholar 

  • Sadik G, Tanaka T, Kato K, Yamamori H, Nessa BN, Morihara T, Takeda M (2009) Phosphorylation of tau at Ser214 mediates its interaction with 14-3-3 protein: implications for the mechanism of tau aggregation. J Neurochem 108:33–43

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto K, Karelina K, Obrietan K (2011) CREB: a multifaceted regulator of neuronal plasticity and protection. J Neurochem 116:1–9

    Article  CAS  PubMed  Google Scholar 

  • Shaw G, Morse S, Ararat M, Graham FL (2002) Preferential transformation of human neuronal cells by human adenoviruses and the origin of HEK 293 cells. FASEB J 16:869–871

    CAS  PubMed  Google Scholar 

  • Silva AJ, Kogan JH, Frankland PW, Kida S (1998) CREB and memory. Annu Rev Neurosci 21:127–148

    Article  CAS  PubMed  Google Scholar 

  • Tai HC, Schuman EM (2008) Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction. Nat Rev Neurosci 9:826–838

    Article  CAS  PubMed  Google Scholar 

  • Wang JZ, Liu F (2008) Microtubule-associated protein tau in development, degeneration and protection of neurons. Prog Neurobiol 85:148–175

    Article  CAS  PubMed  Google Scholar 

  • Zhao K, Ippolito G, Wang L, Price V, Kim MH, Cornwell G, Fulenchek S, Breen GA, Goux WJ, D'Mello SR (2010) Neuron-selective toxicity of tau peptide in a cell culture model of neurodegenerative tauopathy: essential role for aggregation in neurotoxicity. J Neurosci Res 88:3399–3413

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Professor Wang Jianzhi at Tongji Medical College of Huazhong University of Sciences and Technology, Wuhan, China, for providing N2a, HEK293/wt, and HEK293/tau441 cells used in these studies. This work was financially supported by the Nature Science Foundation of Hubei Province (No. 2016CFB561) and the Project of Hubei Key Laboratory of Genetic Regulation and Integrative Biology (No. GRIB201604).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-mei Liao.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, M., Li, Y., Wang, Sh. et al. The Involvement of NR2B and tau Protein in MG132-Induced CREB Dephosphorylation. J Mol Neurosci 62, 154–162 (2017). https://doi.org/10.1007/s12031-017-0919-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-017-0919-8

Keywords

Navigation