Skip to main content

Advertisement

Log in

Effect of Epac1 on pERK and VEGF Activation in Postoperative Persistent Pain in Rats

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The function of guanine nucleotide exchange protein conversion factor (Epac1) in regenerating nerves, stimulating insulin release, controlling vascular pressure, and controlling other metabolic activities has been recognized; however, few studies have addressed the potential role of Epac1 in controlling chronic postoperative pain. Using a rat model of skin/muscle incision and retraction (SMIR), our study tested the hypothesis that increased Epac1 signaling is a factor in postoperative chronic pain. Rats were randomly divided into normal, sham operation, SMIR, SMIR + Epac1 siRNA (Epac1 inhibitor), and normal + 8-pCPT (Epac1 agonist) groups. The mechanical withdrawal threshold (MWT) was used as an index of pain sensitivity. Epac1 expression in the incision-site muscle, DRG, and spinal cord was assessed using western blotting and immunofluorescence. The effects of Epac1 agonists and Epac1 siRNA on MWT and phosphorylated extracellular signal-regulated kinase (pERK), vascular endothelial growth factor (VEGF), protein release in the spinal cord, and DRG levels were also studied. SMIR increased Epac1 expression in the incision-site muscle, spinal cord, and DRG, and decreased MWT. 8-pCPT induced the development of hypersensitivity and increased pERK and VEGF expression in normal rats, whereas siRNA decreased the expression of pERK and VEGF. This study suggests that activation of the Epac1 signal might induce local postoperative recovery process, which could be an important mechanism by which to control postoperative chronic pain. Our data suggest that therapy targeted at decreasing Epac1 levels provides promise for the prevention and treatment of chronic postoperative pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Almahariq M, Mei FC, Cheng X (2014) Cyclic AMP sensor EPAC proteins and energy homeostasis. Trends Endocrinol Metab 25:60–71

    Article  CAS  PubMed  Google Scholar 

  • Bespalov AG, Tregub PP, Kulikov VP, Pijanzin AI and Belousov AA (2014). [The role of VEGF, HSP-70 and protein S-100B in the potentiation effect of the neuroprotective effect of hypercapnic hypoxia]. Patol Fiziol Eksp Ter, 24-7

  • Borges Lda S, Dermargos A, da Silva Junior EP, Weimann E, Lambertucci RH, Hatanaka E (2015) Melatonin decreases muscular oxidative stress and inflammation induced by strenuous exercise and stimulates growth factor synthesis. J Pineal Res 58:166–172

    Article  PubMed  Google Scholar 

  • Bry M, Kivela R, Leppanen VM, Alitalo K (2014) Vascular endothelial growth factor-B in physiology and disease. Physiol Rev 94:779–794

    Article  CAS  PubMed  Google Scholar 

  • Burdyga A, Conant A, Haynes L, Zhang J, Jalink K, Sutton R, Neoptolemos J, Costello E, Tepikin A (2013) cAMP inhibits migration, ruffling and paxillin accumulation in focal adhesions of pancreatic ductal adenocarcinoma cells: effects of PKA and EPAC. Biochim Biophys Acta 1833:2664–2672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Wild C, Zhou X, Ye N, Cheng X, Zhou J (2014) Recent advances in the discovery of small molecules targeting exchange proteins directly activated by cAMP (EPAC). J Med Chem 57:3651–3665

    Article  CAS  PubMed  Google Scholar 

  • Dixon WJ (1991) Staircase bioassay: the up-and-down method. Neurosci Biobehav Rev 15:47–50

    Article  CAS  PubMed  Google Scholar 

  • Eijkelkamp N, Wang H, Garza-Carbajal A, Willemen HL, Zwartkruis FJ, Wood JN, Dantzer R, Kelley KW, Heijnen CJ, Kavelaars A (2010) Low nociceptor GRK2 prolongs prostaglandin E2 hyperalgesia via biased cAMP signaling to Epac/Rap1, protein kinase Cepsilon, and MEK/ERK. J Neurosci 30:12806–12815

    Article  CAS  PubMed  Google Scholar 

  • Eijkelkamp N, Linley JE, Torres JM, Bee L, Dickenson AH, Gringhuis M, Minett MS, Hong GS, Lee E, Oh U, Ishikawa Y, Zwartkuis FJ, Cox JJ, Wood JN (2013) A role for Piezo2 in EPAC1-dependent mechanical allodynia. Nat Commun 4:1682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flatters SJ (2008) Characterization of a model of persistent postoperative pain evoked by skin/muscle incision and retraction (SMIR). Pain 135:119–130

    Article  PubMed  Google Scholar 

  • Gao YJ, Ji RR (2010) Targeting astrocyte signaling for chronic pain. Neurotherapeutics 7:482–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giannotta M, Benedetti S, Tedesco FS, Corada M, Trani M, D’Antuono R, Millet Q, Orsenigo F, Galvez BG, Cossu G, Dejana E (2014) Targeting endothelial junctional adhesion molecule-A/ EPAC/ Rap-1 axis as a novel strategy to increase stem cell engraftment in dystrophic muscles. EMBO Mol Med 6:239–258

    CAS  PubMed  Google Scholar 

  • Guo A, Vulchanova L, Wang J, Li X, Elde R (1999) Immunocytochemical localization of the vanilloid receptor 1 (VR1): relationship to neuropeptides, the P2X3 purinoceptor and IB4 binding sites. Eur J Neurosci 11:946–958

    Article  CAS  PubMed  Google Scholar 

  • Hennenberg M, Strittmatter F, Schmetkamp H, Rutz B, Walther S, Stief CG, Gratzke C (2013) The cAMP effector EPAC activates Elk1 transcription factor in prostate smooth muscle, and is a minor regulator of alpha1-adrenergic contraction. J Biomed Sci 20:46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hucho TB, Dina OA, Levine JD (2005) Epac mediates a cAMP-to-PKC signaling in inflammatory pain: an isolectin B4(+) neuron-specific mechanism. J Neurosci 25:6119–6126

    Article  CAS  PubMed  Google Scholar 

  • Hylden JL, Wilcox GL (1980) Intrathecal morphine in mice: a new technique. Eur J Pharmacol 67:313–316

    Article  CAS  PubMed  Google Scholar 

  • Iannitti T, Graham A, Dolan S (2012) Increased central and peripheral inflammation and inflammatory hyperalgesia in Zucker rat model of leptin receptor deficiency and genetic obesity. Exp Physiol 97:1236–1245

    Article  CAS  PubMed  Google Scholar 

  • Jha MK, Jeon S, Suk K (2012) Glia as a link between neuroinflammation and neuropathic pain. Immun Netw 12:41–47

    Article  Google Scholar 

  • Ji RR, Berta T, Nedergaard M (2013) Glia and pain: is chronic pain a gliopathy? Pain 154(Suppl 1):S10–S28

    Article  PubMed  PubMed Central  Google Scholar 

  • Koyama J, Miyake S, Sasayama T, Chiba Y, Kondoh T, Kohmura E (2010) The novel VEGF receptor antagonist, VGA1155, reduces edema, decreases infarct and improves neurological function after stroke in rats. Kobe J Med Sci 56:E1–E11

    CAS  PubMed  Google Scholar 

  • Lee TM, Lin SZ, Chang NC (2013) Both PKA and Epac pathways mediate N-acetylcysteine-induced Connexin43 preservation in rats with myocardial infarction. PLoS One 8:e71878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lever IJ, Robinson M, Cibelli M, Paule C, Santha P, Yee L, Hunt SP, Cravatt BF, Elphick MR, Nagy I, Rice AS (2009) Localization of the endocannabinoid-degrading enzyme fatty acid amide hydrolase in rat dorsal root ganglion cells and its regulation after peripheral nerve injury. J Neurosci 29:3766–3780

    Article  CAS  PubMed  Google Scholar 

  • Martinov T, Glenn-Finer R, Burley S, Tonc E, Balsells E, Ashbaugh A, Swanson L, Daughters RS, Chatterjea D (2013) Contact hypersensitivity to oxazolone provokes vulvar mechanical hyperalgesia in mice. PLoS One 8:e78673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mechsner S, Kaiser A, Kopf A, Gericke C, Ebert A, Bartley J (2009) A pilot study to evaluate the clinical relevance of endometriosis-associated nerve fibers in peritoneal endometriotic lesions. Fertil Steril 92:1856–1861

    Article  PubMed  Google Scholar 

  • Medina MG, Lebovic DI (2009) Endometriosis-associated nerve fibers and pain. Acta Obstet Gynecol Scand 88:968–975

    Article  PubMed  PubMed Central  Google Scholar 

  • Misra UK, Pizzo SV (2009) Epac1-induced cellular proliferation in prostate cancer cells is mediated by B-Raf/ERK and mTOR signaling cascades. J Cell Biochem 108:998–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misra UK, Pizzo SV (2012) Upregulation of mTORC2 activation by the selective agonist of EPAC, 8-CPT-2Me-cAMP, in prostate cancer cells: assembly of a multiprotein signaling complex. J Cell Biochem 113:1488–1500

    CAS  PubMed  Google Scholar 

  • Misra UK, Pizzo SV (2013) Evidence for a pro-proliferative feedback loop in prostate cancer: the role of Epac1 and COX-2-dependent pathways. PLoS One 8:e63150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murakami K, Kuniyoshi K, Iwakura N, Matsuura Y, Suzuki T, Takahashi K, Ohtori S (2014) Vein wrapping for chronic nerve constriction injury in a rat model: study showing increases in VEGF and HGF production and prevention of pain-associated behaviors and nerve damage. J Bone Joint Surg Am 96:859–867

    Article  PubMed  Google Scholar 

  • Murray AJ, Shewan DA (2008) Epac mediates cyclic AMP-dependent axon growth, guidance and regeneration. Mol Cell Neurosci 38:578–588

    Article  CAS  PubMed  Google Scholar 

  • Oltean S, Qiu Y, Ferguson JK, Stevens M, Neal C, Russell A, Kaura A, Arkill KP, Harris K, Symonds C, Lacey K, Wijeyaratne L, Gammons M, Wylie E, Hulse RP, Alsop C, Cope G, Damodaran G, Betteridge KB, Ramnath R, Satchell SC, Foster RR, Ballmer-Hofer K, Donaldson LF, Barratt J, Baelde HJ, Harper SJ, Bates DO, Salmon AH (2015) Vascular endothelial growth factor-A165b is protective and restores endothelial glycocalyx in diabetic nephropathy. J Am Soc Nephrol 26:1889–1904

    Article  CAS  PubMed  Google Scholar 

  • Rehmann H (2013) Epac-inhibitors: facts and artefacts. Sci Rep 3:3032

    Article  PubMed  PubMed Central  Google Scholar 

  • Rigamonti N, Kadioglu E, Keklikoglou I, Wyser Rmili C, Leow CC, De Palma M (2014) Role of angiopoietin-2 in adaptive tumor resistance to VEGF signaling blockade. Cell Rep 8:696–706

    Article  CAS  PubMed  Google Scholar 

  • Roberts OL, Dart C (2014) cAMP signalling in the vasculature: the role of Epac (exchange protein directly activated by cAMP). Biochem Soc Trans 42:89–97

    Article  CAS  PubMed  Google Scholar 

  • Sands WA, Palmer TM (2008) Regulating gene transcription in response to cyclic AMP elevation. Cell Signal 20:460–466

    Article  CAS  PubMed  Google Scholar 

  • Schmidt M, Dekker FJ, Maarsingh H (2013) Exchange protein directly activated by cAMP (epac): a multidomain cAMP mediator in the regulation of diverse biological functions. Pharmacol Rev 65:670–709

    Article  PubMed  Google Scholar 

  • Sone H, Deo BK, Kumagai AK (2000) Enhancement of glucose transport by vascular endothelial growth factor in retinal endothelial cells. Invest Ophthalmol Vis Sci 41:1876–1884

    CAS  PubMed  Google Scholar 

  • Sugimoto K, Rashid IB, Kojima K, Shoji M, Tanabe J, Tamasawa N, Suda T, Yasujima M (2008) Time course of pain sensation in rat models of insulin resistance, type 2 diabetes, and exogenous hyperinsulinaemia. Diabetes Metab Res Rev 24:642–650

    Article  CAS  PubMed  Google Scholar 

  • Sun K, Kusminski CM, Luby-Phelps K, Spurgin SB, An YA, Wang QA, Holland WL, Scherer PE (2014) Brown adipose tissue derived VEGF-A modulates cold tolerance and energy expenditure. Mol Metab 3:474–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao X, Mei F, Agrawal A, Peters CJ, Ksiazek TG, Cheng X, Tseng CT (2014) Blocking of exchange proteins directly activated by cAMP leads to reduced replication of Middle East respiratory syndrome coronavirus. J Virol 88:3902–3910

    Article  PubMed  PubMed Central  Google Scholar 

  • Uchida K, Baba H, Maezawa Y, Kubota C (2002) Progressive changes in neurofilament proteins and growth-associated protein-43 immunoreactivities at the site of cervical spinal cord compression in spinal hyperostotic mice. Spine (Phila Pa 1976) 27:480–486

    Article  Google Scholar 

  • Wang H, Heijnen CJ, van Velthoven CT, Willemen HL, Ishikawa Y, Zhang X, Sood AK, Vroon A, Eijkelkamp N, Kavelaars A (2013) Balancing GRK2 and EPAC1 levels prevents and relieves chronic pain. J Clin Invest 123:5023–5034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie P, Joladarashi D, Dudeja P, Sun L, Kanwar YS (2014) Modulation of angiotensin II-induced inflammatory cytokines by the Epac1-Rap1A-NHE3 pathway: implications in renal tubular pathobiology. Am J Physiol Ren Physiol 306:F1260–F1274

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Ren Shen.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Su Cao and Zhen Bian contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, S., Bian, Z., Zhu, X. et al. Effect of Epac1 on pERK and VEGF Activation in Postoperative Persistent Pain in Rats. J Mol Neurosci 59, 554–564 (2016). https://doi.org/10.1007/s12031-016-0776-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-016-0776-x

Keywords

Navigation