Skip to main content

Advertisement

Log in

Impact of Heat Shock Protein A 12B Overexpression on Spinal Astrocyte Survival Against Oxygen-Glucose-Serum Deprivation/Restoration in Primary Cultured Astrocytes

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Heat shock protein A 12B (HSPA12B) is a newly discovered member of the heat shock protein 70 family. Preclinical evidence indicates that HSPA12B helps protect the brain from ischemic injury, although its specific function remains unclear. The aim of this study is to investigate whether HSPA12B overexpression can protect astrocytes from oxygen-glucose-serum deprivation/restoration (OGD/R) injury. We analyzed the effects of HSPA12B overexpression on spinal cord ischemia-reperfusion injury and spinal astrocyte survival. After ischemia-reperfusion injury, we found that HSPA12B overexpression decreased spinal cord water content and infarct volume. MTT assay showed that HSPA12B overexpression increased astrocyte survival after OGD/R treatment. Flow cytometry results showed a marked inhibition of OGD/R-induced astrocyte apoptosis. Western blot assay showed that HSPA12B overexpression significantly increased regulatory protein B-cell lymphocyte 2 (Bcl-2) levels, whereas it decreased expression of the Bax protein, which forms a heterodimer with Bcl-2. Measurements of the level of activation of caspase-3 by Caspase-Glo®3/7 Assay kit showed that HSPA12B overexpression markedly inhibited caspase-3 activation. Notably, we demonstrated that the effects of HSPA12B on spinal astrocyte survival depended on activation of the PI3K/Akt signal pathway. These findings indicate that HSPA12B protects against spinal cord ischemia-reperfusion injury and may represent a potential treatment target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7:41–53

    Article  CAS  PubMed  Google Scholar 

  • Ahmad A, Genovese T, Impellizzeri D, Crupi R, Velardi E, Marino A, Esposito E, Cuzzocrea S (2012) Reduction of ischemic brain injury by administration of palmitoylethanolamide after transient middle cerebral artery occlusion in rats. Brain Res 1477:45–58

    Article  CAS  PubMed  Google Scholar 

  • Amar AP, Levy ML (1999) Pathogenesis and pharmacological strategies for mitigating secondary damage in acute spinal cord injury. Neurosurgery 44:1027–1039

    Article  CAS  PubMed  Google Scholar 

  • Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92:351–366

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee S, Stewart AS, Bish LT, Jayasankar V, Kim EM, Pirolli T, Burdick J, Woo YJ, Gardner TJ, Sweeney HL (2002) Viral gene transfer of the antiapoptotic factor Bcl-2 protects against chronic postischemic heart failure. Circulation 106:I212–217

    PubMed  Google Scholar 

  • Chi Z, Ma X, Cui G, Li M, Li F (2013) Cinnamtannin B-1 regulates cell proliferation of spinal cord astrocytes and protects the cell from oxygen-glucose-serum deprivation/reoxygenation-induced apoptosis. Int J Mol Sci 14:15827–15837

    Article  PubMed  PubMed Central  Google Scholar 

  • Chi W, Meng F, Li Y, Li P, Wang G, Cheng H, Han S, Li J (2014) Impact of microRNA-134 on neural cell survival against ischemic injury in primary cultured neuronal cells and mouse brain with ischemic stroke by targeting HSPA12B. Brain Res 10:22–33

    Article  Google Scholar 

  • Crawford E, Rubio P (1973) Reappraisal of adjuncts to avoid ischemia in the treatment of aneurysms of descending thoracic aorta. J Thorac Cardiovasc Surg 66:693–704

    CAS  PubMed  Google Scholar 

  • Cui Z, Wang P, Sun L, Liu H, Yang J, Li X, Kang L, Huang Y, Shen A, Cheng C (2010) Lipopolysaccharide-evoked HSPA12B expression by activation of MAPK cascade in microglial cells of the spinal cord. J Neurol Sci 294:29–37

    Article  CAS  PubMed  Google Scholar 

  • Die J, Wang K, Fan L, Jiang Y, Shi Z (2010) Rosuvastatin preconditioning provides neuroprotection against spinal cord ischemia in rats through modulating nitric oxide synthase expressions. Brain Res 1346:251–261

    Article  CAS  PubMed  Google Scholar 

  • Engström K, Willén H, Kåbjörn-Gustafsson C, Andersson C, Olsson M, Göransson M, Järnum S, Olofsson A, Warnhammar E, Åman P (2006) The myxoid/round cell liposarcoma fusion oncogene <i> FUS-DDIT3</i> and the normal <i> DDIT3</i> induce a liposarcoma phenotype in transfected human fibrosarcoma cells. Am J Pathol 168:1642–1653

    Article  PubMed  PubMed Central  Google Scholar 

  • Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV (2004) Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci 24:2143–2155

    Article  CAS  PubMed  Google Scholar 

  • Fehlings M, Sekhon L (2000) Cellular, ionic and biomolecular mechanisms of the injury process. Contemporary Management of Spinal Cord Injury: From Impact to Rehabilitation Chicago, IL: American Association of Neurological Surgeons: 3–50

  • Gething M-J (1997) Guidebook to molecular chaperones and protein-folding catalysts. Oxford University Press

  • Giffard RG, Yenari MA (2004) Many mechanisms for hsp70 protection from cerebral ischemia. J Neurosurg Anesthesiol 16:53–61

    Article  PubMed  Google Scholar 

  • Guérit J-M, Dion RA (2002) State-of-the-art of neuromonitoring for prevention of immediate and delayed paraplegia in thoracic and thoracoabdominal aorta surgery. Ann Thorac Surg 74:S1867–S1869

    Article  PubMed  Google Scholar 

  • Guo J, Duckles SP, Weiss JH, Li X, Krause DN (2012) 17β-Estradiol prevents cell death and mitochondrial dysfunction by an estrogen receptor-dependent mechanism in astrocytes after oxygen–glucose deprivation/reperfusion. Free Radic Biol Med 52:2151–2160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han Z, Truong QA, Park S, Breslow JL (2003) Two Hsp70 family members expressed in atherosclerotic lesions. Proc Natl Acad Sci 100:1256–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu G, Tang J, Zhang B, Lin Y, J-i H, Galloway J, Bedell V, Bahary N, Han Z, Ramchandran R (2006) A novel endothelial-specific heat shock protein HspA12B is required in both zebrafish development and endothelial functions in vitro. J Cell Sci 119:4117–4126

    Article  CAS  PubMed  Google Scholar 

  • Jovicic A, Jolissaint JFZ, Moser R, Santos MFS, Luthi-Carter R (2013) MicroRNA-22 (miR-22) overexpression is neuroprotective via general anti-apoptotic effects and may also target specific Huntington’s disease-related mechanisms. PLoS One 8, e54222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung SY, Kim DY, Yune TY, Shin DH, Baek SB, Kim CJ (2014) Treadmill exercise reduces spinal cord injury-induced apoptosis by activating the PI3K/Akt pathway in rats. Exp Ther Med 7:587–593

    CAS  PubMed  Google Scholar 

  • Kang L, Zhang G, Yan Y, Ke K, Wu X, Gao Y, Li J, Zhu L, Wu Q, Zhou Z (2013) The role of HSPA12B in regulating neuronal apoptosis. Neurochem Res 38:311–320

    Article  CAS  PubMed  Google Scholar 

  • Kiang JG, Tsokos GC (1998) Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology. Pharmacol Ther 80:183–201

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Gu J, Liu Y, Long H, Wang G, Yin G, Fan J (2013) iNOS participates in apoptosis of spinal cord neurons via p-BAD dephosphorylation following ischemia/reperfusion (I/R) injury in rat spinal cord. Neurosci Lett 545:117–122

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Zhao J, Chang Z, Guo G (2013) CaMKII activates ASK1 to induce apoptosis of spinal astrocytes under oxygen–glucose deprivation. Cell Mol Neurobiol 33:543–549

    Article  CAS  PubMed  Google Scholar 

  • Lu K, Liang CL, Liliang PC, Yang CH, Cho CL, Weng HC, Tsai YD, Wang KW, Chen HJ (2010) Inhibition of extracellular signal-regulated kinases 1/2 provides neuroprotection in spinal cord ischemia/reperfusion injury in rats: relationship with the nuclear factor-κB-regulated anti-apoptotic mechanisms. J Neurochem 114:237–246

    CAS  PubMed  Google Scholar 

  • Ma Y, Lu C, Li C, Li R, Zhang Y, Ma H, Zhang X, Ding Z, Liu L (2013) Overexpression of HSPA12B protects against cerebral ischemia/reperfusion injury via a PI3K/Akt-dependent mechanism. Biochim Biophys Acta 1:57–66

    Article  Google Scholar 

  • Matsuda H, Fukuda T, Iritani O, Nakazawa T, Tanaka H, Sasaki H, Minatoya K, Ogino H (2010) Spinal cord injury is not negligible after TEVAR for lower descending aorta. Eur J Vasc Endovasc Surg 39:179–186

    Article  CAS  PubMed  Google Scholar 

  • Oyinbo CA (2011) Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade. Acta Neurobiol Exp (Wars) 71:281–299

    Google Scholar 

  • Pouw M, Hosman A, Van Kampen A, Hirschfeld S, Thietje R, van de Meent H (2010) Is the outcome in acute spinal cord ischaemia different from that in traumatic spinal cord injury? A cross-sectional analysis of the neurological and functional outcome in a cohort of 93 paraplegics. Spinal Cord 49:307–312

    Article  PubMed  Google Scholar 

  • Sharp FR, Lowenstein D, Simon R, Hisanaga K (1991) Heat shock protein hsp72 induction in cortical and striatal astrocytes and neurons following infarction. J Cereb Blood Flow Metab 11:621–627

    Article  CAS  PubMed  Google Scholar 

  • Snoeckx LH, Cornelussen RN, Van Nieuwenhoven FA, Reneman RS, Van der Vusse GJ (2001) Heat shock proteins and cardiovascular pathophysiology. Physiol Rev 81:1461–1497

    CAS  PubMed  Google Scholar 

  • Steagall RJ (2008) Characterization of heat shock protein A12B as a novel angiogenesis regulator

  • Takano T, Tian G-F, Peng W, Lou N, Libionka W, Han X, Nedergaard M (2005) Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 9:260–267

    Article  PubMed  Google Scholar 

  • Takano T, Oberheim N, Cotrina ML, Nedergaard M (2009) Astrocytes and ischemic injury. Stroke 40:S8–S12

    Article  PubMed  Google Scholar 

  • Thuret S, Moon LD, Gage FH (2006) Therapeutic interventions after spinal cord injury. Nat Rev Neurosci 7:628–643

    Article  CAS  PubMed  Google Scholar 

  • Tohda C, Kuboyama T (2011) Current and future therapeutic strategies for functional repair of spinal cord injury. Pharmacol Ther 132:57–71

    Article  CAS  PubMed  Google Scholar 

  • Voloboueva LA, Duan M, Ouyang Y, Emery JF, Stoy C, Giffard RG (2007) Overexpression of mitochondrial Hsp70/Hsp75 protects astrocytes against ischemic injury in vitro. J Cereb Blood Flow Metab 28:1009–1016

    Article  PubMed  PubMed Central  Google Scholar 

  • Wan IY, Angelini GD, Bryan AJ, Ryder I, Underwood MJ (2001) Prevention of spinal cord ischaemia during descending thoracic and thoracoabdominal aortic surgery. Eur J Cardiothorac Surg 19:203–213

    Article  CAS  PubMed  Google Scholar 

  • Winter B, Pattani H (2011) Spinal cord injury. Anaesthesia Intensive Care Med 12:403–405

    Article  Google Scholar 

  • Xu Q (2002) Role of heat shock proteins in atherosclerosis. Arterioscler Thromb Vasc Biol 22:1547–1559

    Article  CAS  PubMed  Google Scholar 

  • Zhang A, Zhang J, Sun P, Yao C, Su C, Sui T, Huang H, Cao X, Ge Y (2010) EIF2α and caspase-12 activation are involved in oxygen–glucose–serum deprivation/restoration-induced apoptosis of spinal cord astrocytes. Neurosci Lett 478:32–36

    Article  CAS  PubMed  Google Scholar 

  • Zheng C, Han J, Xia W, Shi S, Liu J, Ying W (2012) NAD <sup> + </sup>administration decreases ischemic brain damage partially by blocking autophagy in a mouse model of brain ischemia. Neurosci Lett 512:67–71

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y-f, Li L, Feng F, Yuan H, Gao D-k, L-a F, Fei Z (2013) Osthole attenuates spinal cord ischemia–reperfusion injury through mitochondrial biogenesis-independent inhibition of mitochondrial dysfunction in rats. J Surg Res 185:805–814

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-wen Gu or Yong-qin Kuang.

Ethics declarations

All experimental protocols were carried out by the Institutional Animal Care at Third Military Medical University and were approved by the Ethics Committee for Animal Experimentation of Third Military Medical University, Chongqing, China. Every effort was made in this study to minimize the number of rats used and their suffering during experiments.

Additional information

Xun Xia and Yuan Ma contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, X., Ma, Y., Yang, Lb. et al. Impact of Heat Shock Protein A 12B Overexpression on Spinal Astrocyte Survival Against Oxygen-Glucose-Serum Deprivation/Restoration in Primary Cultured Astrocytes. J Mol Neurosci 59, 511–520 (2016). https://doi.org/10.1007/s12031-016-0768-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-016-0768-x

Keywords

Navigation