Skip to main content

Advertisement

Log in

Mitochondrial c-Fos May Increase the Vulnerability of Neuro2a Cells to Cellular Stressors

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Although c-Fos expression in mitochondria is known to increase under excitatory injury via kainic acid or N-methyl-d-aspartate injection, the authentic function of c-Fos in mitochondria remains unknown. We found that c-Fos expression in the mitochondria of neuroblastoma Neuro2a cells was augmented by oxygen and glucose deprivation (OGD), which is a common in vitro model for brain ischemia. Then we demonstrated that Neuro2a cells stably expressing c-Fos exclusively in the mitochondria were more vulnerable to stressors such as OGD, rotenone (which is known to induce mitochondrial dysfunction) and hydrogen peroxide (a reactive oxygen species). Since mitochondrial dysfunction and the generation of reactive oxygen species are known to be caused by OGD, our findings indicate that mitochondrial c-Fos increases neuronal vulnerability to brain ischemia. This suggests that mitochondrial c-Fos play a potential role in inducing neuronal death on, and can therefore act as a potential drug target for brain ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Kafaji G, Golbahar J (2013) High glucose-induced oxidative stress increases the copy number of mitochondrial DNA in human mesangial cells. Biomed Res Int 2013:754946

    Article  PubMed  PubMed Central  Google Scholar 

  • Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3:1301–1306

    Article  CAS  PubMed  Google Scholar 

  • Bokesch PM, Marchand JE, Connelly CS, Wurm WH, Kream RM (1994) Dextromethorphan inhibits ischemia-induced c-fos expression and delayed neuronal death in hippocampal neurons. Anesthesiology 81:470–477

    Article  CAS  PubMed  Google Scholar 

  • Cardone L, Carlucci A, Affaitati A et al (2004) Mitochondrial AKAP121 binds and targets protein tyrosine phosphatase D1, a novel positive regulator of src signaling. Mol Cell Biol 24:4613–4626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clayton DA (2000) Transcription and replication of mitochondrial DNA. Hum Reprod 15(Suppl 2):11–17

    Article  PubMed  Google Scholar 

  • Domanska-Janik K, Buzanska L, Dluzniewska J, Kozlowska H, Sarnowska A, Zablocka B (2004) Neuroprotection by cyclosporin A following transient brain ischemia correlates with the inhibition of the early efflux of cytochrome C to cytoplasm. Brain Res Mol Brain Res 121:50–59

    Article  CAS  PubMed  Google Scholar 

  • Dong X, Stothard P, Forsythe IJ, Wishart DS (2004) PlasMapper: a web server for drawing and auto-annotating plasmid maps. Nucleic Acids Res 32:W660–W664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hokari M, Kuroda S, Iwasaki Y (2010) Pretreatment with the ciclosporin derivative NIM811 reduces delayed neuronal death in the hippocampus after transient forebrain ischaemia. J Pharm Pharmacol 62:485–490

    Article  CAS  PubMed  Google Scholar 

  • Itoh S, Lemay S, Osawa M et al (2005) Mitochondrial Dok-4 recruits Src kinase and regulates NF-kappaB activation in endothelial cells. J Biol Chem 280:26383–26396

    Article  CAS  PubMed  Google Scholar 

  • Kambe Y, Nakamichi N, Georgiev DD, Nakamura N, Taniura H, Yoneda Y (2008) Insensitivity to glutamate neurotoxicity mediated by NMDA receptors in association with delayed mitochondrial membrane potential disruption in cultured rat cortical neurons. J Neurochem 105:1886–1900

    Article  CAS  PubMed  Google Scholar 

  • Kelly DP, Scarpulla RC (2004) Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev 18:357–368

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Sharma S, Kim J, Ferrante RJ, Ryu H (2008) Mitochondrial nuclear receptors and transcription factors: who’s minding the cell? J Neurosci Res 86:961–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Ragheb K, Lawler G et al (2003) Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J Biol Chem 278:8516–8525

    Article  CAS  PubMed  Google Scholar 

  • Lin CS, Wang LS, Tsai CM, Wei YH (2008) Low copy number and low oxidative damage of mitochondrial DNA are associated with tumor progression in lung cancer tissues after neoadjuvant chemotherapy. Interact Cardiovasc Thorac Surg 7:954–958

    Article  PubMed  Google Scholar 

  • Miura A, Kambe Y, Inoue K et al (2013) Pituitary adenylate cyclase-activating polypeptide type 1 receptor (PAC1) gene is suppressed by transglutaminase 2 activation. J Biol Chem 288:32720–32730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niizuma K, Endo H, Chan PH (2009) Oxidative stress and mitochondrial dysfunction as determinants of ischemic neuronal death and survival. J Neurochem 109(Suppl 1):133–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nitatori T, Sato N, Waguri S et al (1995) Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis. J Neurosci 15:1001–1011

    CAS  PubMed  Google Scholar 

  • Nyitrai G, Puskas L, Antal K et al (2005) Preconditioning-specific reduction of c-fos expression in hippocampal granule and pyramidal but not other forebrain neurons of ischemic brain: a quantitative immunohistochemical study. Neurosci Lett 381:344–349

    Article  CAS  PubMed  Google Scholar 

  • Ogita K, Okuda H, Kitano M, Fujinami Y, Ozaki K, Yoneda Y (2002) Localization of activator protein-1 complex with DNA binding activity in mitochondria of murine brain after in vivo treatment with kainate. J Neurosci 22:2561–2570

    CAS  PubMed  Google Scholar 

  • Ogita K, Fujinami Y, Kitano M, Yoneda Y (2003) Transcription factor activator protein-1 expressed by kainate treatment can bind to the non-coding region of mitochondrial genome in murine hippocampus. J Neurosci Res 73:794–802

    Article  CAS  PubMed  Google Scholar 

  • Perez-Pinzon MA, Xu GP, Born J et al (1999) Cytochrome C is released from mitochondria into the cytosol after cerebral anoxia or ischemia. J Cereb Blood Flow Metab 19:39–43

    Article  CAS  PubMed  Google Scholar 

  • Piantadosi CA, Zhang J (1996) Mitochondrial generation of reactive oxygen species after brain ischemia in the rat. Stroke 27:327–331, discussion 332

    Article  CAS  PubMed  Google Scholar 

  • Psarra AM, Sekeris CE (2009) Glucocorticoid receptors and other nuclear transcription factors in mitochondria and possible functions. Biochim Biophys Acta 1787:431–436

    Article  CAS  PubMed  Google Scholar 

  • Rogers A, Schmuck G, Scholz G, Williams DC (2004) c-fos mRNA expression in rat cortical neurons during glutamate-mediated excitotoxicity. Toxicol Sci 82:562–569

    Article  CAS  PubMed  Google Scholar 

  • Schinzel AC, Takeuchi O, Huang Z et al (2005) Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc Natl Acad Sci U S A 102:12005–12010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schreiber SS, Tocco G, Najm I, Thompson RF, Baudry M (1993) Cycloheximide prevents kainate-induced neuronal death and c-fos expression in adult rat brain. J Mol Neurosci 4:149–159

    Article  CAS  PubMed  Google Scholar 

  • Sionov RV, Cohen O, Kfir S, Zilberman Y, Yefenof E (2006) Role of mitochondrial glucocorticoid receptor in glucocorticoid-induced apoptosis. J Exp Med 203:189–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugawara T, Fujimura M, Morita-Fujimura Y, Kawase M, Chan PH (1999) Mitochondrial release of cytochrome c corresponds to the selective vulnerability of hippocampal CA1 neurons in rats after transient global cerebral ischemia. J Neurosci 19:RC39

    CAS  PubMed  Google Scholar 

  • Wang C, Youle RJ (2009) The role of mitochondria in apoptosis. Annu Rev Genet 43:95–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whittemore ER, Loo DT, Watt JA, Cotman CW (1995) A detailed analysis of hydrogen peroxide-induced cell death in primary neuronal culture. Neuroscience 67:921–932

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Young Scientists (B) (22790256) from The Ministry of Education, Culture, Sports, Science and Technology (MEXT). We thank Drs. Takashi Kurihara and Kazuhiko Inoue for their helpful discussion and advice. We thank Ms. Izumi Fujisima for her technical contribution. We wish to thank the Joint Research Laboratory, Kagoshima University Graduate School of Medical and Dental Sciences, for the use of its facilities and equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsuro Miyata.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kambe, Y., Miyata, A. Mitochondrial c-Fos May Increase the Vulnerability of Neuro2a Cells to Cellular Stressors. J Mol Neurosci 59, 106–112 (2016). https://doi.org/10.1007/s12031-015-0710-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-015-0710-7

Keywords

Navigation