Skip to main content

Advertisement

Log in

A Potent Multi-functional Neuroprotective Derivative of Tetramethylpyrazine

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Neurodegenerative disorders are one of the leading causes of death among the elderly. Therapeutic approaches with a single target have proven unsuccessful in treating these diseases. Structural combination of multi-functional compounds may lead to a molecule with multiple properties. In this study, we designed and synthesized T-006, a novel analog derived from two multi-functional neuroprotective chemicals, tetramethylpyrazine and J147. The methoxyphenyl group of J147 was replaced by tetramethylpyrazine. Bioactivity evaluation showed that T-006 at very low concentrations had multi-functional neuroprotective effects including rescuing iodoacetic acid-induced neuronal loss, preventing oxidative stress-induced neurotoxicity and reducing glutamate-induced excitotoxicity in vitro. Most importantly, T-006 significantly ameliorated memory impairments in APP/PS1 transgenic mice. These multiple functions of a single molecule suggest that T-006 is a promising novel neuroprotective agent for treating various neurodegenerative disorders, including and in particular Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

TMP:

Tetramethylpyrazine

CGNs:

Cerebellar granule neurons

PC12:

Pheochromocytoma cell

DIV:

Days in vitro

ROS:

Reactive oxygen species

RNS:

Reactive nitrogen species

IAA:

Iodoacetic acid

References

  • Aliev G, Obrenovich ME, Smith MA, Perry G (2003) Hypoperfusion, mitochondria failure, oxidative stress, and Alzheimer disease. J Biomed Biotechnol 2003:162–163

    Article  PubMed Central  PubMed  Google Scholar 

  • Ballard C, Gauthier S, Corbett A et al (2011) Alzheimer’s disease. Lancet 377:1019–1031

    Article  PubMed  Google Scholar 

  • Cao K, Chen-Plotkin AS, Plotkin JB, Wang LS (2010) Age-correlated gene expression in normal and neurodegenerative human brain tissues. PLoS One 5:e13098

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen Q, Prior M, Dargusch R et al (2011) A novel neurotrophic drug for cognitive enhancement and Alzheimer’s disease. PLoS One 6:e27865

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chiruta C, Zhao Y, Tang F, Wang T, Schubert D (2013) Metabolism of a potent neuroprotective hydrazide. Bioorg Med Chem 21:2733–2741

    Article  CAS  PubMed  Google Scholar 

  • Citron M (2010) Alzheimer’s disease: strategies for disease modification. Nat Rev Drug Discov 9:387–398

    Article  CAS  PubMed  Google Scholar 

  • Corbyn Z (2013) New set of Alzheimer’s trials focus on prevention. Lancet 381:614–615

    Article  PubMed  Google Scholar 

  • Cui G, Shan L, Hung M et al (2013a) A novel Danshensu derivative confers cardioprotection via PI3K/Akt and Nrf2 pathways. Int J Cardiol 168:1349–1359

    Article  PubMed  Google Scholar 

  • Cui W, Zhang Z, Li W et al (2013b) The anti-cancer agent SU4312 unexpectedly protects against MPP(+)-induced neurotoxicity via selective and direct inhibition of neuronal NOS. Br J Pharmacol 168:1201–1214

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fu H, Li W, Lao Y et al (2006) Bis(7)-tacrine attenuates beta amyloid-induced neuronal apoptosis by regulating L-type calcium channels. J Neurochem 98:1400–1410

    Article  CAS  PubMed  Google Scholar 

  • Hu JZ, Huang JH, Xiao ZM et al (2013) Tetramethylpyrazine accelerates the function recovery of traumatic spinal cord in rat model by attenuating inflammation. J Neurol Sci 324:94–99

    Article  CAS  PubMed  Google Scholar 

  • Jankowsky JL, Younkin LH, Gonzales V et al (2007) Rodent A beta modulates the solubility and distribution of amyloid deposits in transgenic mice. J Biol Chem 282:22707–22720

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jove M, Portero-Otin M, Naudi A, Ferrer I, Pamplona R (2014) Metabolomics of human brain aging and age-related neurodegenerative diseases. J Neuropathol Exp Neurol 73:640–657

    Article  CAS  PubMed  Google Scholar 

  • Koehn FE, Carter GT (2005) The evolving role of natural products in drug discovery. Nat Rev Drug Discov 4:206–220

    Article  CAS  PubMed  Google Scholar 

  • Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Dargusch R, Maher P, Schubert D (2008) A broadly neuroprotective derivative of curcumin. J Neurochem 105:1336–1345

    Article  CAS  PubMed  Google Scholar 

  • Luo J, Li W, Zhao Y et al (2010) Pathologically activated neuroprotection via uncompetitive blockade of N-methyl-D-aspartate receptors with fast off-rate by novel multifunctional dimer bis(propyl)-cognitin. J Biol Chem 285:19947–19958

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lv C, Liu X, Liu H, Chen T, Zhang W (2014) Geniposide attenuates mitochondrial dysfunction and memory deficits in APP/PS1 transgenic mice. Curr Alzheimer Res 11:580–587

    Article  CAS  PubMed  Google Scholar 

  • Marx J (2006) Neurodegenerative diseases. Picking apart the causes of mysterious dementias. Science 314:42–43

    Article  CAS  PubMed  Google Scholar 

  • Moreira PI, Nunomura A, Nakamura M et al (2008) Nucleic acid oxidation in Alzheimer disease. Free Radic Biol Med 44:1493–1505

    Article  CAS  PubMed  Google Scholar 

  • Ng LF, Gruber J, Cheah IK et al (2014) The mitochondria-targeted antioxidant MitoQ extends lifespan and improves healthspan of a transgenic Caenorhabditis elegans model of Alzheimer disease. Free Radic Biol Med 71:390–401

    Article  CAS  PubMed  Google Scholar 

  • Prior M, Dargusch R, Ehren JL, Chiruta C, Schubert D (2013) The neurotrophic compound J147 reverses cognitive impairment in aged Alzheimer’s disease mice. Alzheimers Res Ther 5:25

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Radi E, Formichi P, Battisti C, Federico A (2014) Apoptosis and oxidative stress in neurodegenerative diseases. J Alzheimers Dis 42:S125–152

    PubMed  Google Scholar 

  • Sun Y, Jiang J, Zhang Z et al (2008) Antioxidative and thrombolytic TMP nitrone for treatment of ischemic stroke. Bioorg Med Chem 16:8868–8874

    Article  CAS  PubMed  Google Scholar 

  • Suna H, Arai M, Tsubotani Y et al (2009) Dysideamine, a new sesquiterpene aminoquinone, protects hippocampal neuronal cells against iodoacetic acid-induced cell death. Bioorg Med Chem 17:3968–3972

    Article  CAS  PubMed  Google Scholar 

  • Xu DP, Duan HW, Zhang ZJ et al (2014a) The novel tetramethylpyrazine bis-nitrone (TN-2) protects against MPTP/MPP+-induced neurotoxicity via inhibition of mitochondrial-dependent apoptosis. J Neuroimmune Pharmacol 9:245–258

    Article  PubMed  Google Scholar 

  • Xu DP, Zhang K, Zhang ZJ et al (2014b) A novel tetramethylpyrazine bis-nitrone (TN-2) protects against 6-hydroxyldopamine-induced neurotoxicity via modulation of the NF-kappaB and the PKCalpha/PI3-K/Akt pathways. Neurochem Int 78C:76–85

    Article  Google Scholar 

  • Ye J, Lin H, Mu J et al (2010) Effect of basic fibroblast growth factor on hippocampal cholinergic neurons in a rodent model of ischaemic encephalopathy. Basic Clin Pharmacol Toxicol 107:931–939

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Raina AK, Lee HG et al (2004) Oxidative stress signalling in Alzheimer’s disease. Brain Res 1000:32–39

    Article  CAS  PubMed  Google Scholar 

  • Zolezzi JM, Silva-Alvarez C, Ordenes D et al (2013) Peroxisome proliferator-activated receptor (PPAR) gamma and PPARalpha agonists modulate mitochondrial fusion-fission dynamics: relevance to reactive oxygen species (ROS)-related neurodegenerative disorders? PLoS One 8:e64019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by grants from the China “12.5” Innovative Drug Project (2012ZX09103-101-055), the 2012 Hong Kong Scholars Program (122870), the China Postdoctoral Science Foundation (2012T50748 and 2013M531911), the Research Grants Council of Hong Kong (561011, 15101014), and the Hong Kong Polytechnic University (G-U952, G-YM32, G-SB10, and G-YZ15). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. We sincerely thank Ms. Josephine Leung for proofreading our manuscript.

Conflict of Interest

The authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zai-Jun Zhang or Yi-Fan Han.

Additional information

Hai-Yun Chen and Da-Ping Xu contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Fig. S1

The ESI-MS spectrum of T-006. (JPEG 62 kb)

High Resolution Image (TIFF 851 kb)

Fig. S2

The 1H-NMR spectrum of T-006. (JPEG 65 kb)

High Resolution Image (TIFF 389 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, HY., Xu, DP., Tan, GL. et al. A Potent Multi-functional Neuroprotective Derivative of Tetramethylpyrazine. J Mol Neurosci 56, 977–987 (2015). https://doi.org/10.1007/s12031-015-0566-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-015-0566-x

Keywords

Navigation