Skip to main content

Advertisement

Log in

A Next-Generation Sequencing of the NOTCH3 and HTRA1 Genes in CADASIL Patients

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Our purpose was to develop a next-generation sequencing procedure to search for NOTCH3 and HTRA1 mutations in patients with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) features. A total of 70 patients were sequenced with semiconductor chips in an Ion Torrent Personal Genome Machine. The putative mutations were confirmed through Sanger sequencing of the corresponding patient. Six patients had a typical cysteine-involving NOTCH3 mutation. A new non-reported NOTCH3 variant (p.Pro2178Ser) was found in two patients. One patient was heterozygous for a non-reported HTRA1 variant, likely non-pathogenic (p.Ser139Ala). We found a typical NOTCH3 mutation in 9 % of the patients. None of the patients had HTRA1 variants with likely pathogenic effect. The next-generation sequencing (NGS) procedure here described would facilitate the rapid and cost-effective screening of large cohorts of CADASIL patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  • Bianchi S, Zicari E, Carluccio A et al (2015) CADASIL in central Italy: a retrospective clinical and genetic study in 229 patients. J Neurol 62:134–141

    Article  Google Scholar 

  • Chabriat H, Vahedi K, Iba-Zizen MT et al (1995) Clinical spectrum of CADASIL: a study of 7 families. Lancet 346:934–939

    Article  CAS  PubMed  Google Scholar 

  • Choi JC, Lee KH, Song SK, Lee JS, Kang SY, Kang JH (2013) Screening for NOTCH3 gene mutations among 151 consecutive Korean patients with acute ischemic stroke. J Stroke Cerebrovasc Dis 22:608–614

    Article  PubMed  Google Scholar 

  • Coto E, Menéndez M, Navarro R et al (2006) A new de novo Notch3 mutation causing CADASIL. Eur J Neurol 2006(13):628–631

    Article  Google Scholar 

  • Dong Y, Hassan A, Zhang Z et al (2003) Yield of screening for CADASIL mutations in lacunar stroke and leukoaraiosis. Stroke 34:203–206

    Article  PubMed  Google Scholar 

  • Dubroca C, Lacombe P, Domenga V et al (2005) Impaired vascular mechanotransduction in a transgenic mouse model of CADASIL. Stroke 36:113–117

    Article  PubMed Central  PubMed  Google Scholar 

  • Gómez J, Reguero JR, Morís C et al (2014) Mutation analysis of the main hypertrophic cardiomyopathy genes using multiplex amplification and semiconductor next-generation sequencing. Circ J 78:2963–71

    Article  PubMed  Google Scholar 

  • Hara K, Shiga A, Fukutake T et al (2009) Association of HTRA1 mutations and familial ischemic cerebral small-vessel disease. N Engl J Med 360:1729–1739

    Article  CAS  PubMed  Google Scholar 

  • Haritunians T, Chow T, De Lange RP et al (2005) Functional analysis of a recurrent missense mutation in Notch3 in CADASIL. J Neurol Neurosurg Psychiatry 76:1242–1248

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Joutel A, Corpechot C, Ducros A et al (1996) Notch3 mutations in CADASIL, an hereditary adult-onset condition causing stroke and dementia. Nature 383:707–710

    Article  CAS  PubMed  Google Scholar 

  • Joutel A, Vahedi K, Corpechot C et al (1997) Strong clustering and stereotyped nature of Notch3 mutations in CADASIL patients. Lancet 350:1511–1515

    Article  CAS  PubMed  Google Scholar 

  • Kalaria RN, Viitanen M, Kalimo H et al (2004) The pathogenesis of CADASIL: an update. J Neurol Sci 226:35–39

    Article  CAS  PubMed  Google Scholar 

  • Kalimo H, Ruchoux MM, Viitanen M, Kalaria RN (2002) CADASIL: a common form of hereditary arteriopathy causing brain infarcts and dementia. Brain Pathol 12:371–384

    Article  CAS  PubMed  Google Scholar 

  • Miao Q, Paloneva T, Tuominen S et al (2004) Fibrosis and stenosis of the long penetrating cerebral arteries: the cause of the white mater pathology in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Brain Pathol 14:358–364

    Article  PubMed  Google Scholar 

  • Tavira B, Gómez J, Santos F, Gil H, Alvarez V, Coto E (2014) A labor- and cost-effective non-optical semiconductor (Ion Torrent) next-generation sequencing of the SLC12A3 and CLCNKA/B genes in Gitelman’s syndrome patients. J Hum Genet 59:376–380

    Article  CAS  PubMed  Google Scholar 

  • Tikka S, Baumann M, Siitonen M et al (2014) CADASIL and CARASIL. Brain Pathol 2014(24):525–244

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant FIS-Instituto Salud Carlos III-European FEDER funds. J.G. was the recipient of an educational grant from Asociación Parkinson Asturias.

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliecer Coto.

Additional information

Angela Fernández and Juan Gómez contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 19 kb)

ESM 2

(DOCX 20 kb)

ESM 3

(DOCX 133 kb)

ESM 4

(DOCX 130 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández, A., Gómez, J., Alonso, B. et al. A Next-Generation Sequencing of the NOTCH3 and HTRA1 Genes in CADASIL Patients. J Mol Neurosci 56, 613–616 (2015). https://doi.org/10.1007/s12031-015-0560-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-015-0560-3

Keywords

Navigation