Skip to main content

Advertisement

Log in

BAG1 is Neuroprotective in In Vivo and In Vitro Models of Parkinson’s Disease

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Bcl-2-associated athanogene-1 (BAG1) is a multifunctional protein comprising co-chaperone function, increasing Hsp70 foldase activity and chaperone-dependent protein degradation of misfolded substrates, with anti-apoptotic activity. It is neuroprotective in different models of neurological diseases, like cerebral ischemia and Huntington’s disease. In the context of Parkinson’s disease, it has recently been shown to restore DJ-1 function in an in vitro model of hereditary Parkinson’s disease. Here, we demonstrate that BAG1 overexpression in SH-SY5Y cells reduces toxicity after transfection of disease-related α-synuclein mutants. Furthermore, it protects from rotenone-induced cell death in vitro and ameliorates neuronal demise in an in vivo 1-methyl-4-phenyl-1,2,3,6,-tetrahydropyridine (MPTP) model for Parkinson’s disease after adeno-associated virus (AAV)-mediated BAG1 gene transfer into the substantia nigra in mice but showed no protective effects in an in vitro 6-hydroxidopamine model. In conclusion, we present BAG1 as a potential therapeutic target in Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson DW, Bradbury KA, Schneider JS (2006) Neuroprotection in Parkinson models varies with toxin administration protocol. Eur J Neurosci 24:3174–3182

    Article  PubMed  Google Scholar 

  • Blum D, Torch S, Lambeng N et al (2001) Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson’s disease. Prog Neurobiol 65:135–172

    Article  CAS  PubMed  Google Scholar 

  • Bove J, Prou D, Perier C, Przedborski S (2005) Toxin-induced models of Parkinson’s disease. NeuroRx 2:484–494

    Article  PubMed Central  PubMed  Google Scholar 

  • Burke D, Gasdaska P, Hartwell L (1989) Dominant effects of tubulin overexpression in Saccharomyces cerevisiae. Mol Cell Biol 9:1049–1059

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cook C, Stetler C, Petrucelli L (2012) Disruption of protein quality control in Parkinson’s disease. Cold Spring Harb Perspect Med 2:a009423

    Article  PubMed Central  PubMed  Google Scholar 

  • de Rijk MC, Launer LJ, Berger K et al (2000) Prevalence of Parkinson’s disease in Europe: a collaborative study of population-based cohorts. Neurol Dis Elder Res Group Neurol 54:S21–S23

    Google Scholar 

  • Deeg S, Gralle M, Sroka K, Bahr M, Wouters FS, Kermer P (2010) BAG1 restores formation of functional DJ-1 L166P dimers and DJ-1 chaperone activity. J Cell Biol 188:505–513

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Demand J, Alberti S, Patterson C, Hohfeld J (2001) Cooperation of a ubiquitin domain protein and an E3 ubiquitin ligase during chaperone/proteasome coupling. Curr Biol 11:1569–1577

    Article  CAS  PubMed  Google Scholar 

  • Dohm CP, Kermer P, Bahr M (2008) Aggregopathy in neurodegenerative diseases: mechanisms and therapeutic implication. Neurodegener Dis 5:321–338

    Article  CAS  PubMed  Google Scholar 

  • Gamerdinger M, Hajieva P, Kaya AM, Wolfrum U, Hartl FU, Behl C (2009) Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3. EMBO J 28:889–901

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Glinka Y, Tipton KF, Youdim MB (1996) Nature of inhibition of mitochondrial respiratory complex I by 6-Hydroxydopamine. J Neurochem 66:2004–2010

    Article  CAS  PubMed  Google Scholar 

  • Goldberg MS, Lansbury PT Jr (2000) Is there a cause-and-effect relationship between alpha-synuclein fibrillization and Parkinson’s disease? Nat Cell Biol 2:E115–E119

    Article  CAS  PubMed  Google Scholar 

  • Hanrott K, Gudmunsen L, O'Neill MJ, Wonnacott S (2006) 6-hydroxydopamine-induced apoptosis is mediated via extracellular auto-oxidation and caspase 3-dependent activation of protein kinase Cdelta. J Biol Chem 281:5373–5382

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Jiang Q, Feng J (2004) Parkin increases dopamine uptake by enhancing the cell surface expression of dopamine transporter. J Biol Chem 279:54380–54386

    Article  CAS  PubMed  Google Scholar 

  • Kermer P, Krajewska M, Zapata JM et al (2002) Bag1 is a regulator and marker of neuronal differentiation. Cell Death Differ 9:405–413

    Article  CAS  PubMed  Google Scholar 

  • Klucken J, Shin Y, Masliah E, Hyman BT, McLean PJ (2004) Hsp70 reduces alpha-synuclein aggregation and toxicity. J Biol Chem 279:25497–25502

    Article  CAS  PubMed  Google Scholar 

  • Liman J, Ganesan S, Dohm CP et al (2005) Interaction of BAG1 and Hsp70 mediates neuroprotectivity and increases chaperone activity. Mol Cell Biol 25:3715–3725

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lotharius J, Brundin P (2002) Impaired dopamine storage resulting from alpha-synuclein mutations may contribute to the pathogenesis of Parkinson’s disease. Hum Mol Genet 11:2395–2407

    Article  CAS  PubMed  Google Scholar 

  • Luders J, Demand J, Hohfeld J (2000) The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome. J Biol Chem 275:4613–4617

    Article  CAS  PubMed  Google Scholar 

  • Mochizuki H, Hayakawa H, Migita M et al (2001) An AAV-derived Apaf-1 dominant negative inhibitor prevents MPTP toxicity as antiapoptotic gene therapy for Parkinson’s disease. Proc Natl Acad Sci U S A 98:10918–10923

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nicklas WJ, Vyas I, Heikkila RE (1985) Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. Life Sci 36:2503–2508

    Article  CAS  PubMed  Google Scholar 

  • Offen D, Beart PM, Cheung NS et al (1998) Transgenic mice expressing human Bcl-2 in their neurons are resistant to 6-hydroxydopamine and 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine neurotoxicity. Proc Natl Acad Sci U S A 95:5789–5794

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Opazo F, Krenz A, Heermann S, Schulz JB, Falkenburger BH (2008) Accumulation and clearance of alpha-synuclein aggregates demonstrated by time-lapse imaging. J Neurochem 106:529–540

    Article  CAS  PubMed  Google Scholar 

  • Outeiro TF, Putcha P, Tetzlaff JE et al (2008) Formation of toxic oligomeric alpha-synuclein species in living cells. PLoS One 3:e1867

    Article  PubMed Central  PubMed  Google Scholar 

  • Paterna JC, Feldon J, Bueler H (2004) Transduction profiles of recombinant adeno-associated virus vectors derived from serotypes 2 and 5 in the nigrostriatal system of rats. J Virol 78:6808–6817

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Perumal AS, Gopal VB, Tordzro WK, Cooper TB, Cadet JL (1992) Vitamin E attenuates the toxic effects of 6-hydroxydopamine on free radical scavenging systems in rat brain. Brain Res Bull 29:699–701

    Article  CAS  PubMed  Google Scholar 

  • Planchamp V, Bermel C, Tonges L et al (2008) BAG1 promotes axonal outgrowth and regeneration in vivo via Raf-1 and reduction of ROCK activity. Brain 131:2606–2619

    Article  PubMed  Google Scholar 

  • Przedborski S, Vila M (2003) The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model: a tool to explore the pathogenesis of Parkinson’s disease. Ann. N.Y. Acad Sci 991:189–198

    Article  CAS  Google Scholar 

  • Schoch S, Cibelli G, Thiel G (1996) Neuron-specific gene expression of synapsin I. Major role of a negative regulatory mechanism. J Biol Chem 271:3317–3323

    Article  CAS  PubMed  Google Scholar 

  • Schuler F, Casida JE (2001) Functional coupling of PSST and ND1 subunits in NADH:ubiquinone oxidoreductase established by photoaffinity labeling. Biochim Biophys Acta 1506:79–87

    Article  CAS  PubMed  Google Scholar 

  • Shin Y, Klucken J, Patterson C, Hyman BT, McLean PJ (2005) The co-chaperone carboxyl terminus of Hsp70-interacting protein (CHIP) mediates alpha-synuclein degradation decisions between proteasomal and lysosomal pathways. J Biol Chem 280:23727–23734

    Article  CAS  PubMed  Google Scholar 

  • Sroka K, Voigt A, Deeg S et al (2009) BAG1 modulates huntingtin toxicity, aggregation, degradation, and subcellular distribution. J Neurochem 111:801–807

    Article  CAS  PubMed  Google Scholar 

  • Storch A, Kaftan A, Burkhardt K, Schwarz J (2000) 6-Hydroxydopamine toxicity towards human SH-SY5Y dopaminergic neuroblastoma cells: independent of mitochondrial energy metabolism. J Neural Transm 107:281–293

    Article  CAS  PubMed  Google Scholar 

  • Takayama S, Reed JC (2001) Molecular chaperone targeting and regulation by BAG family proteins. Nat Cell Biol 3:E237–E241

    Article  CAS  PubMed  Google Scholar 

  • Takayama S, Sato T, Krajewski S et al (1995) Cloning and functional analysis of BAG-1: a novel Bcl-2-binding protein with anti-cell death activity. Cell 80:279–284

    Article  CAS  PubMed  Google Scholar 

  • Takayama S, Krajewski S, Krajewska M et al (1998) Expression and location of Hsp70/Hsc-binding anti-apoptotic protein BAG-1 and its variants in normal tissues and tumor cell lines. Cancer Res 58:3116–3131

    CAS  PubMed  Google Scholar 

  • Tatton NA, Kish SJ (1997) In situ detection of apoptotic nuclei in the substantia nigra compacta of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice using terminal deoxynucleotidyl transferase labelling and acridine orange staining. Neuroscience 77:1037–1048

    Article  CAS  PubMed  Google Scholar 

  • Vila M, Jackson-Lewis V, Vukosavic S et al (2001) Bax ablation prevents dopaminergic neurodegeneration in the 1-methyl- 4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Proc Natl Acad Sci U S A 98:2837–2842

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu Y, Blum D, Nissou MF, Benabid AL, Verna JM (1996) Unlike MPP+, apoptosis induced by 6-OHDA in PC12 cells is independent of mitochondrial inhibition. Neurosci Lett 221:69–71

    Article  CAS  PubMed  Google Scholar 

  • Xilouri M, Vogiatzi T, Vekrellis K, Park D, Stefanis L (2009) Abberant alpha-synuclein confers toxicity to neurons in part through inhibition of chaperone-mediated autophagy. PLoS One 4:e5515

    Article  PubMed Central  PubMed  Google Scholar 

  • Yang L, Matthews RT, Schulz JB et al (1998) 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyride neurotoxicity is attenuated in mice overexpressing Bcl-2. J Neurosci 18:8145–8152

    CAS  PubMed  Google Scholar 

Download references

Funding Source

The work was supported by the DFG Research Center for Molecular Physiology of the Brain (CMPB), Göttingen, Germany, the NeuroNE network of excellence within the 6th framework program of the European Union, and Starter Grants of the University Medical Center Goettingen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Liman.

Additional information

Pawel Kermer and Anja Köhn contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. S1

Stable expression in SH-SY5Y cells was shown via western blotting using a BAG1 antibody. Expression of BAG1 can only be seen in cells stably overexpressing BAG1, but not in the empty vector transfected cells. β-Tubulin staining served as protein loading control. (JPEG 7 kb)

Supplementary Fig. S2

Expression of the different α-Synuclein constructs on protein level was tested via western blotting against α-Synuclein. The expression levels of the different mutants are comparable. β-Tubulin staining served as protein loading control. (JPEG 26 kb)

Supplementary Fig. S3

Expression of the BAG1 protein after viral transduction of the SN was tested via immunohistochemistry with a) staining against BAG1 b) viral EGFP expression. As shown in the merged picture EGFP and BAG1 are co localising (c). (scale bar = 50 μm) (JPEG 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kermer, P., Köhn, A., Schnieder, M. et al. BAG1 is Neuroprotective in In Vivo and In Vitro Models of Parkinson’s Disease. J Mol Neurosci 55, 587–595 (2015). https://doi.org/10.1007/s12031-014-0396-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-014-0396-2

Keywords

Navigation