Skip to main content

Advertisement

Log in

Induction of Human Umbilical Wharton’s Jelly-Derived Stem Cells Toward Oligodendrocyte Phenotype

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

In this study, we examined phenotypic features of human Wharton’s jelly mesenchymal stem cells-derived oligodendrocytes. We induced human WJMSCs to form OLs by signaling molecules including basic fibroblastic growth factor, platelet-derived growth factor-AA, and triiodothyronine hormone. Differentiated WJMSCs showed morphologic characteristics of an OL phenotype. Expression of surface markers and genes in oligodendrocyte precursor cells or OLs were analyzed by immunocytochemistry staining and real-time polymerase chain reaction, respectively. These results suggest that WJMSCs could be programmed to OLs and might provide a potential source for cell therapy in neurodegenerative disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Asakura K, Hunter SF, Rodriguez M (1997) Effects of transforming growth factor–β and platelet–derived growth factor on oligodendrocyte precursors: insights gained from a neuronal cell line. J Neurochem 68(6):2281–2290

    Article  PubMed  CAS  Google Scholar 

  • Baas D, Bourbeau D, Sarlieve LL, Ittel ME, Dussault JH, Puymirat J (1997) Oligodendrocyte maturation and progenitor cell proliferation are independently regulated by thyroid hormone. Glia 19(4):324–332

    Article  PubMed  CAS  Google Scholar 

  • Baron W, Metz B, Bansal R, Hoekstra D, de Vries H (2000) PDGF and FGF-2 signaling in oligodendrocyte progenitor cells: regulation of proliferation and differentiation by multiple intracellular signaling pathways. Mol Cell Neurosci 15(3):314–329

    Article  PubMed  CAS  Google Scholar 

  • Brüstle O, Jones KN, Learish RD, Karram K, Choudhary K, Wiestler OD et al (1999) Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 285(5428):754, 6

    Article  PubMed  Google Scholar 

  • Durand B, Raff M (2000) A cell–intrinsic timer that operates during oligodendrocyte development. Bioessays 22(1):64–71

    Article  PubMed  CAS  Google Scholar 

  • Kang S-K, Shin M-J, Jung JS, Kim YG, Kim C-H (2006) Autologous adipose tissue-derived stromal cells for treatment of spinal cord injury. Stem Cells Dev 15(4):583–594

    Article  PubMed  CAS  Google Scholar 

  • Kang SM, Cho MS, Seo H, Yoon CJ, Oh SK, Choi YM et al (2007) Efficient induction of oligodendrocytes from human embryonic stem cells. Stem Cells 25(2):419–424

    Article  PubMed  CAS  Google Scholar 

  • Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, Sharp K et al (2005) Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci 25(19):4694–4705

    Article  PubMed  CAS  Google Scholar 

  • Kennea NL, Waddington SN, Chan J, O’Donoghue K, Yeung D, Taylor DL et al (2009) Differentiation of human fetal mesenchymal stem cells into cells with an oligodendrocyte phenotype. Cell Cycle 8(7):1069–1079

    Article  PubMed  CAS  Google Scholar 

  • Louro J, Pearse D (2008) Stem and progenitor cell therapies: recent progress for spinal cord injury repair. Neurol Res 30(1):5–16

    Article  PubMed  CAS  Google Scholar 

  • Lu L, Chen X, Zhang CW, Yang WL, Wu YJ, Sun L, Bai LM, Gu XS, Ahmed S, Dawe GS, Xiao ZC (2008) Morphological and functional characterization of predifferentiation of myelinating glialike cells from human bone marrow stromal cells through activation of F3/Notch signaling in mouse retina. Stem Cells 26(2):580–590

    Google Scholar 

  • Margossian T, Reppel L, Makdissy N, Stoltz J-F, Bensoussan D, Huselstein C (2012) Mesenchymal stem cells derived from Wharton’s jelly: comparative phenotype analysis between tissue and in vitro expansion. Bio-Med Mater Eng 22(4):243–254

    Google Scholar 

  • McKinnon RD, Smith C, Behar T, Smith T, Dubois–Dalcq M (1993) Distinct effects of bFGF and PDGF on oligodendrocyte progenitor cells. Glia 7(3):245–254

    Article  PubMed  CAS  Google Scholar 

  • Mitchell KE, Weiss ML, Mitchell BM, Martin P, Davis D, Morales L et al (2003) Matrix cells from Wharton’s jelly form neurons and glia. Stem Cells 21(1):50–60

    Article  PubMed  CAS  Google Scholar 

  • Nakafuku M, Nakamura S (1995) Establishment and characterization of a multipotential neural cell line that can conditionally generate neurons, astrocytes, and oligodendrocytes in vitro. J Neurosci Res 41(2):153–168

    Article  PubMed  CAS  Google Scholar 

  • Ogawa S-i, Tokumoto Y, Miyake J, Nagamune T (2011) Induction of oligodendrocyte differentiation from adult human fibroblast-derived induced pluripotent stem cells. In Vitro Cell Dev Biol-Anim 47(7):464–469

    Article  PubMed  CAS  Google Scholar 

  • Raff MC, Miller RH, Noble M (1983) A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature 303(5916):390–396

    Article  PubMed  CAS  Google Scholar 

  • Reubinoff BE, Itsykson P, Turetsky T, Pera MF, Reinhartz E, Itzik A et al (2001) Neural progenitors from human embryonic stem cells. Nat Biotechnol 19(12):1134–1140

    Article  PubMed  CAS  Google Scholar 

  • Shang A-J, Hong S-Q, Xu Q, Wang H-Y, Yang Y, Wang Z-F et al (2011) NT-3-secreting human umbilical cord mesenchymal stromal cell transplantation for the treatment of acute spinal cord injury in rats. Brain Res 1391:102–113

    Article  PubMed  CAS  Google Scholar 

  • Sher F, Balasubramaniyan V, Boddeke E, Copray S (2008) Oligodendrocyte differentiation and implantation: new insights for remyelinating cell therapy. Curr Opin Neurol 21(5):607–614

    Article  PubMed  Google Scholar 

  • Stangel M, Hartung H-P (2002) Remyelinating strategies for the treatment of multiple sclerosis. Prog Neurobiol 68(5):361–376

    Article  PubMed  CAS  Google Scholar 

  • Thomson JA, Odorico JS (2000) Human embryonic stem cell and embryonic germ cell lines. Trends Biotechnol 18(2):53–57

    Article  PubMed  CAS  Google Scholar 

  • Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ et al (2004) Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells 22(7):1330–1337

    Article  PubMed  Google Scholar 

  • Weiss ML, Medicetty S, Bledsoe AR, Rachakatla RS, Choi M, Merchav S, et al. (2006) Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson's disease. Stem Cells 24(3):781–792

    Google Scholar 

  • Woodruff R, Franklin R (1997) Growth factors and remyelination in the CNS. Histol Histopathol 12:459–466

    PubMed  CAS  Google Scholar 

  • Zhang S-C (2001) Defining glial cells during CNS development. Nat Rev Neurosci 2(11):840–843

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Zhang H-T, Hong S-Q, Ma X, Jiang X-D, Xu R-X (2009) Cografted Wharton’s jelly cells-derived neurospheres and BDNF promote functional recovery after rat spinal cord transection. Neurochem Res 34(11):2030–2039

    Article  PubMed  CAS  Google Scholar 

  • Zhou Q, Wang S, Anderson DJ (2000) Identification of a novel family of oligodendrocyte lineage-specific basic helix–loop–helix transcription factors. Neuron 25(2):331–343

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Iran National Science Foundation (INSF) for financial supports and Cellular & Molecular Research Center of Iran University of Medical Sciences for providing us facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elmira Mikaeili Agah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikaeili Agah, E., Parivar, K., Nabiuni, M. et al. Induction of Human Umbilical Wharton’s Jelly-Derived Stem Cells Toward Oligodendrocyte Phenotype. J Mol Neurosci 51, 328–336 (2013). https://doi.org/10.1007/s12031-013-0094-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-0094-5

Keywords

Navigation