Skip to main content
Log in

Identification of Regulatory Relationships in Parkinson's Disease

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Parkinson's disease is a complex chronic neurodegenerative disease common in elderly people and greatly affects the quality of their life. However, the pathogenesis of Parkinson's disease is still incompletely understood to date. The purpose of this present study is to explore the pathogenesis of Parkinson's disease using a computational bioinformatics analysis of gene expression. We downloaded gene expression profiles on Parkinson's disease from the Gene Expression Omnibus database and predicted the miRNAs and transcription factors of differentially expressed genes in Parkinson's disease. A total of 11 genes associated with Parkinson's disease initiation were identified, including junction plakoglobin (JUP). Besides, we identified a new transcription factor, N-Myc down-regulated gene 1 (NDRG1), which is regulated by miRNA-133 in Parkinson's disease. Furthermore, we proposed a hypothesis that there may be two kinds of regulatory relationships among miRNA-133, NDRG1, and JUP: direct regulatory relationship and indirect relationship. The results presented in this work confirmed the role of miRNA-133 in Parkinson's disease and substantiated our understanding of miRNA-related neurodegenerative states in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

PD:

Parkinson's disease

GEO:

Gene Expression Omnibus

JUP:

Junction plakoglobin

NDRG1:

N-Myc down-regulated gene 1

UTR:

Untranslated region

miRNAs:

MicroRNAs

DEGs:

Differentially expressed genes

RMA:

Robust multiarray average

DN:

Dopamine neuron

TF:

Transcription factor

NCBI:

National Center of Biotechnology Information

References

  • Alibes A, Yankilevich P, Canada A, Diaz-Uriarte R (2007) IDconverter and IDClight: conversion and annotation of gene and protein IDs. BMC Bioinforma 8:9

    Article  Google Scholar 

  • Ang SL (2006) Transcriptional control of midbrain dopaminergic neuron development. Development 133:3499–3506

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  • Ben-Ze’ev A, Geiger B (1998) Differential molecular interactions of beta-catenin and plakoglobin in adhesion, signaling and cancer. Curr Opin Cell Biol 10:629–639

    Article  PubMed  Google Scholar 

  • Cookson MR (2009) Alpha-synuclein and neuronal cell death. Mol Neurodegener 4

  • Cowin P, Kapprell HP, Franke WW, Tamkun J, Hynes RO (1986) Plakoglobin: a protein common to different kinds of intercellular adhering junctions. Cell 46:1063–1073

    Article  PubMed  CAS  Google Scholar 

  • de Lau LM, Breteler MM (2006) Epidemiology of Parkinson's disease. Lancet Neurol 5:525–535

    Article  PubMed  Google Scholar 

  • de Mena L, Coto E, Cardo LF et al (2010) Analysis of the micro-RNA-133 and PITX3 genes in Parkinson's disease. Am J Med Genet B Neuropsychiatr Genet 153B:1234–1239

    PubMed  Google Scholar 

  • Hebert SS, De Strooper B (2007) Molecular biology. miRNAs in neurodegeneration. Science 317:1179–1180

    Article  PubMed  Google Scholar 

  • Holen I, Whitworth J, Nutter F et al (2012) Loss of plakoglobin promotes decreased cell-cell contact, increased invasion, and breast cancer cell dissemination in vivo. Breast Cancer Res 14:R86

    Article  PubMed  CAS  Google Scholar 

  • Irizarry RA, Hobbs B, Collin F et al (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264

    Article  PubMed  Google Scholar 

  • Jankovic J (2008) Parkinson's disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79:368–376

    Article  PubMed  CAS  Google Scholar 

  • Jinek M, Doudna JA (2009) A three-dimensional view of the molecular machinery of RNA interference. Nature 457:405–412

    Article  PubMed  CAS  Google Scholar 

  • Kalaydjieva L, Gresham D, Gooding R et al (2000) N-myc downstream-regulated gene 1 is mutated in hereditary motor and sensory neuropathy-Lom. Am J Hum Genet 67:47–58

    Article  PubMed  CAS  Google Scholar 

  • Khan NL, Graham E, Critchley P et al (2003) Parkin disease: a phenotypic study of a large case series. Brain 126:1279–1292

    Article  PubMed  Google Scholar 

  • Kim J, Inoue K, Ishii J et al (2007) A microRNA feedback circuit in midbrain dopamine neurons. Science 317:1220–1224

    Article  PubMed  CAS  Google Scholar 

  • Knudsen KA, Wheelock MJ (1992) Plakoglobin, or an 83-kD homologue distinct from beta-catenin, interacts with E-cadherin and N-cadherin. J Cell Biol 118:671–679

    Article  PubMed  CAS  Google Scholar 

  • Langston JW (2006) The Parkinson's complex: parkinsonism is just the tip of the iceberg. Ann Neurol 59:591–596

    Article  PubMed  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  PubMed  CAS  Google Scholar 

  • Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  PubMed  CAS  Google Scholar 

  • Lucking CB, Durr A, Bonifati V et al (2000) Association between early-onset Parkinson's disease and mutations in the parkin gene. N Engl J Med 342:1560–1567

    Article  PubMed  CAS  Google Scholar 

  • Min H, Yoon S (2010) Got target? Computational methods for microRNA target prediction and their extension. Exp Mol Med 42:233–244

    Article  PubMed  CAS  Google Scholar 

  • Peifer M, McCrea PD, Green KJ, Wieschaus E, Gumbiner BM (1992) The vertebrate adhesive junction proteins beta-catenin and plakoglobin and the Drosophila segment polarity gene armadillo form a multigene family with similar properties. J Cell Biol 118:681–691

    Article  PubMed  CAS  Google Scholar 

  • Schaefer A, O’Carroll D, Tan CL et al (2007) Cerebellar neurodegeneration in the absence of microRNAs. J Exp Med 204:1553–1558

    Article  PubMed  CAS  Google Scholar 

  • Troyanskaya O, Cantor M, Sherlock G et al (2001) Missing value estimation methods for DNA microarrays. Bioinformatics 17:520–525

    Article  PubMed  CAS  Google Scholar 

  • Van Den Eeden SK, Tanner CM, Bernstein AL et al (2003) Incidence of Parkinson's disease: variation by age, gender, and race/ethnicity. Am J Epidemiol 157:1015–1022

    Article  Google Scholar 

  • Wakabayashi K, Takahashi H (1997) Neuropathology of autonomic nervous system in Parkinson's disease. Eur Neurol 38(Suppl 2):2–7

    Article  PubMed  Google Scholar 

  • Wallen A, Perlmann T (2003) Transcriptional control of dopamine neuron development. Ann N Y Acad Sci 991:48–60

    Article  PubMed  CAS  Google Scholar 

  • West AB, Kapatos G, O’Farrell C et al (2004) N-myc regulates parkin expression. J Biol Chem 279:28896–28902

    Article  PubMed  CAS  Google Scholar 

  • Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855–862

    Article  PubMed  CAS  Google Scholar 

  • Wingender E (2008) The TRANSFAC project as an example of framework technology that supports the analysis of genomic regulation. Brief Bioinform 9:326–332

    Article  PubMed  CAS  Google Scholar 

  • Zheng B, Liao Z, Locascio JJ et al (2010) PGC-1alpha, a potential therapeutic target for early intervention in Parkinson’s disease. Sci Transl Med 2:52ra73

    Article  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Sun, C., Liang, Y. et al. Identification of Regulatory Relationships in Parkinson's Disease. J Mol Neurosci 51, 9–12 (2013). https://doi.org/10.1007/s12031-012-9937-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-012-9937-8

Keywords

Navigation