Skip to main content

Advertisement

Log in

Neuroprotective Effect of Protease-Activated Receptor-2 in the Hypoxia-Induced Apoptosis of Rat RGC-5 Cells

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Hypoxia-induced apoptosis of retinal ganglion cells (RGCs) is regarded as a pivotal pathological process in various ocular diseases. Protease-activated receptor-2 (PAR-2) is involved in the regulation of cell inflammation, differentiation, and apoptosis in many cell types and tissues, but the role of PAR-2 in RGCs under pathological conditions remains unknown. The purpose of this study was to investigate the role of PAR-2 in the apoptosis of RGCs under hypoxic stress. An immortalized rat RGC line (RGC-5) was exposed to hypoxia (5 % O2). The expression and location of PAR-2 in RGC-5 cells under hypoxia stress were investigated using real-time PCR, western blotting and immunocytochemistry. Cell viability was determined using the Cell Counting Kit-8 assay. Apoptosis was detected using Hoechst 33342 staining and AnnexinV-FITC/PI assays. The role of Bcl-2, Bax, and the active subunit of caspase-3 was also investigated. The results showed that PAR-2 was functionally expressed in RGC-5 cells and up-regulated at both mRNA and protein levels under hypoxic stress. The PAR-2 selective agonist, SLIGRL, rescued RGC-5 cells from hypoxia-induced apoptosis through up-regulation of the Bcl-2/Bax ratio and down-regulation of caspase-3 activation. This study provides the first evidence that PAR-2 has a protective effect against the hypoxia-induced apoptosis of RGC-5 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams MN, Ramachandran R, Yau MK et al (2011) Structure, function and pathophysiology of protease activated receptors. Pharmacol Ther 130:248–282

    Article  PubMed  CAS  Google Scholar 

  • Amadesi S, Bunnett N (2004) Protease-activated receptors: protease signaling in the gastrointestinal tract. Curr Opin Pharmacol 4:551–556

    Article  PubMed  CAS  Google Scholar 

  • Barnes JA, Singh S, Gomes AV (2004) Protease activated receptors in cardiovascular function and disease. Mol Cell Biochem 263:227–239

    Article  PubMed  CAS  Google Scholar 

  • Borensztajn K, Bresser P, van der Loos C et al (2010) Protease-activated receptor-2 induces myofibroblast differentiation and tissue factor up-regulation during bleomycin-induced lung injury. Am J Pathol 177:2753–2764

    Article  PubMed  CAS  Google Scholar 

  • Bushell T (2007) The emergence of proteinase-activated receptor-2 as a novel target for the treatment of inflammation-related CNS disorders. J Physiol 581:7–16

    Article  PubMed  CAS  Google Scholar 

  • Cocks T, Moffatt J (2001) Protease-activated receptor-2 (PAR2) in the airways. Pulm Pharmacol Ther 14:183–191

    Article  PubMed  CAS  Google Scholar 

  • Dery O, Bunnett N (1999) Proteinase-activated receptors: a growing family of heptahelical receptors for thrombin, trypsin and tryptase. Biochem Soc Trans 27:246–254

    PubMed  CAS  Google Scholar 

  • Frassetto LJ (2006) Kinase-dependent differentiation of a retinal ganglion cell precursor. Investig Ophthalmol Vis Sci 47:427–438

    Article  Google Scholar 

  • Goldenberg-Cohen N, Dadon S, Avraham B-CR et al (2008) Molecular and histological changes following central retinal artery occlusion in a mouse model. Exp Eye Res 87:327–333

    Article  PubMed  CAS  Google Scholar 

  • Greenwood SM, Bushell TJ (2010) Astrocytic activation and an inhibition of MAP kinases are required for proteinase–activated receptor–2–mediated protection from neurotoxicity. J Neurochem 113:1471–1480

    PubMed  CAS  Google Scholar 

  • Gupta S (2003) Molecular signaling in death receptor and mitochondrial pathways of apoptosis (Review). Int J Oncol 22:15–20

    PubMed  CAS  Google Scholar 

  • Herve Y, Sroussi YL, Villines D, Sun Y (2012) The down regulation of neutrophil oxidative metabolism by S100A8 and S100A9: implication of the protease-activated receptor-2. Mol Immunol 50:42–48

    Article  Google Scholar 

  • Hockenbery D, Nuñez G, Milliman C, Schreiber RD, Korsmeyer SJ (1990) Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348:334–336

    Article  PubMed  CAS  Google Scholar 

  • Hong S, Lee J, Kim C, Seong GJ (2007) Agmatine protects retinal ganglion cells from hypoxia-induced apoptosis in transformed rat retinal ganglion cell line. BMC Neurosci 8:81–92

    Article  PubMed  Google Scholar 

  • Jacobson MD, Evan GI (1994) Apoptosis: breaking the ICE. Curr Biol 4:337–340

    Article  PubMed  CAS  Google Scholar 

  • Jesmin S, Gando S, Zaedi S, Sakuraya F (2006) Differential expression, time course and distribution of four PARs in rats with endotoxin-induced acute lung injury. Inflammation 30:14–27

    Article  PubMed  Google Scholar 

  • Jin G, Hayashi T, Kawagoe J et al (2005) Deficiency of PAR-2 gene increases acute focal ischemic brain injury. J Cereb Blood Flow Metab 25:302–313

    Article  PubMed  CAS  Google Scholar 

  • Kaur C, Foulds WS, Ling EA (2008) Hypoxia–ischemia and retinal ganglion cell damage. Clin Ophthalmol (Auckland, NZ) 2:879–889

    Article  Google Scholar 

  • Kaushik S, Pandav S, Ram J (2003) Neuroprotection in glaucoma. J Postgrad Med 49:90–95

    Article  PubMed  CAS  Google Scholar 

  • Kawabata A (2002) PAR-2: structure, function and relevance to human diseases of the gastric mucosa. Expert Rev Mol Med 2:1–17

    Article  Google Scholar 

  • Kawabata A (2003) Gastrointestinal functions of proteinase-activated receptors. Life Sci 74:247–254

    Article  PubMed  CAS  Google Scholar 

  • Kawabata A, Kuroda R (2000) Protease-activated receptor (PAR), a novel family of G protein-coupled seven trans-membrane domain receptors: activation mechanisms and physiological roles. Jpn J Pharmacol 82:171–174

    Article  PubMed  CAS  Google Scholar 

  • Kelso EB (2005) Therapeutic promise of proteinase-activated receptor-2 antagonism in joint inflammation. J Pharmacol Exp Ther 316:1017–1024

    Article  PubMed  Google Scholar 

  • Kergoat H, Herard ME, Lemay M (2006) RGC sensitivity to mild systemic hypoxia. Investig Ophthalmol Vis Sci 47:5423–5427

    Article  Google Scholar 

  • Krishnamoorthy R, Agarwal P, Prasanna G et al (2001) Characterization of a transformed rat retinal ganglion cell line. Mol Brain Res 86:1–12

    Article  PubMed  CAS  Google Scholar 

  • Lakhani SA, Masud A, Kuida K et al (2006) Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Sci STKE 311:847–851

    CAS  Google Scholar 

  • Leger AJ, Covic L, Kuliopulos A (2006) Protease-activated receptors in cardiovascular diseases. Circulation 114:1070–1077

    Article  PubMed  CAS  Google Scholar 

  • Li R, Reiser G (2011) Phosphorylation of Ser45 and Ser59 of αB-crystallin and p38/extracellular regulated kinase activity determine αB-crystallin-mediated protection of rat brain astrocytes from C2-ceramide- and staurosporine-induced cell death. J Neurochem 118:354–364

    Article  PubMed  CAS  Google Scholar 

  • Li R, Rohatgi T, Hanck T, Reiser G (2009) αA-crystallin and αB-crystallin, newly identified interaction proteins of protease-activated receptor-2, rescue astrocytes from C2-ceramide- and staurosporine-induced cell death. J Neurochem 110:1433–1444

    Article  PubMed  CAS  Google Scholar 

  • Linsenmeier RA, Braun RD, McRipley MA et al (1998) Retinal hypoxia in long-term diabetic cats. Investig Ophthalmol Vis Sci 39:1647–1657

    CAS  Google Scholar 

  • Luo W, Wang Y, Reiser G (2005) Two types of protease-activated receptors (PAR-1 and PAR-2) mediate calcium signaling in rat retinal ganglion cells RGC-5. Brain Res 1047:159–167

    Article  PubMed  CAS  Google Scholar 

  • Luo W, Wang Y, Reiser G (2007a) Protease-activated receptors in the brain: receptor expression, activation, and functions in neurodegeneration and neuroprotection. Brain Res Rev 56:331–345

    Article  PubMed  CAS  Google Scholar 

  • Luo W, Wang Y, Reiser G (2007b) Proteinase-activated receptor-1 and −2 induce the release of chemokine GRO/CINC-1 from rat astrocytes via differential activation of JNK isoforms, evoking multiple protective pathways in brain. Biochem J 401:65–78

    Article  PubMed  Google Scholar 

  • Marzo I, Brenner C, Zamzami N et al (1998) Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 281:2027–2031

    Article  PubMed  CAS  Google Scholar 

  • Menzel-Severing J, Siekmann U, Weinberger A, Roessler G, Walter P, Mazinani B (2012) Early hyperbaric oxygen treatment for nonarteritic central retinal artery obstruction. Am J Ophthalmol 454–459

  • Napoli C, Cicala C, Wallace JL et al (2000) Protease-activated receptor-2 modulates myocardial ischemia–reperfusion injury in the rat heart. Proc Natl Acad Sci 97:3678–3683

    Article  PubMed  CAS  Google Scholar 

  • Noorbakhsh F, Vergnolle N, McArthur JC et al (2005) Proteinase-activated receptor-2 induction by neuroinflammation prevents neuronal death during HIV infection. J Immunol 174:7320–7329

    PubMed  CAS  Google Scholar 

  • Oltval ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programed cell death. Cell 74:609–619

    Article  Google Scholar 

  • Pournaras C, Illic J, Gilodi N (1985) Retinal vascular occlusion: possibilities of a direct oxygen supply to the hypoxic areas. Klin Monatsbl Augenheilkd 186:485–487

    Article  PubMed  CAS  Google Scholar 

  • Rattenholl A, Steinhoff M (2008) Proteinase-activated receptor-2 in the skin: receptor expression, activation and function during health and disease. Drug News Perspect 21:369–381

    Article  PubMed  CAS  Google Scholar 

  • Rohatgi T, Sedehizade F, Sabel B, Reiser G (2003) Protease–activated receptor subtype expression in developing eye and adult retina of the rat after optic nerve crush. J Neurosci Res 73:246–254

    Article  PubMed  CAS  Google Scholar 

  • Saccà S, Izzotti A (2008) Oxidative stress and glaucoma: injury in the anterior segment of the eye. Prog Brain Res 173:385–407

    Article  PubMed  Google Scholar 

  • Scarborough RM (2003) Protease-activated receptor-2 antagonists and agonists. Curr Med Chem-Cardiovasc Hematol Agents 1:73–82

    Article  PubMed  CAS  Google Scholar 

  • Shpacovitch VM, Seeliger S, Huber-Lang M et al (2007) Agonists of proteinase-activated receptor-2 affect transendothelial migration and apoptosis of human neutrophils. Exp Dermatol 16:799–806

    Article  PubMed  CAS  Google Scholar 

  • Steinberg SF (2005) The cardiovascular actions of protease-activated receptors. Mol Pharmacol 67:2

    Article  PubMed  CAS  Google Scholar 

  • Steinhoff M, Neisius U, Ikoma A et al (2003) Proteinase-activated receptor-2 mediates itch: a novel pathway for pruritus in human skin. J Neurosci 23:6176–6180

    PubMed  CAS  Google Scholar 

  • Striggow F, Riek-Burchardt M, Kiesel A et al (2001) Four different types of protease–activated receptors are widely expressed in the brain and are up–regulated in hippocampus by severe ischemia. Eur J Neurosci 14:595–608

    Article  PubMed  CAS  Google Scholar 

  • Van Bergen NJ, Wood JPM, Chidlow G et al (2009) Recharacterization of the RGC-5 retinal ganglion cell line. Investig Ophthalmol Vis Sci 50:4267–4272

    Article  Google Scholar 

  • Vesey DA, Kruger WA, Poronnik P, Gobé GC, Johnson DW (2007) Proinflammatory and proliferative responses of human proximal tubule cells to PAR-2 activation. Am J Physiol-Ren Physiol 293:F1441–F1449

    Article  CAS  Google Scholar 

  • Wang Y, Luo W, Reiser G (2007) Activation of protease-activated receptors in astrocytes evokes a novel neuroprotective pathway through release of chemokines of the growth-regulated oncogene/cytokine-induced neutrophil chemoattractant family. Eur J Neurosci 26:3159–3168

    Article  PubMed  Google Scholar 

  • Xiao-Ming Y (2000) Signal transduction mediated by Bid, a pro-death Bcl-2 family proteins, connects the death receptor and mitochondria apoptosis pathways. Cell Res 10:161–167

    Article  Google Scholar 

  • Zhang H, Yang X, Yang H et al (2007) Modulation of mast cell proteinase-activated receptor expression and IL-4 release by IL-12. Immunol Cell Biol 85:558–566

    Article  PubMed  CAS  Google Scholar 

  • Zhou (2011) Activation of PAR2 or/and TLR4 promotes SW620 cell proliferation and migration via phosphorylation of ERK1/2. Oncol Rep 25:503–511

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study is supported by grants from the Natural Science Foundation of China (nos. 81000379 and 30872833) and the Youth Innovation Fund of the Third Military Medical University (no. 2009XQN30). We thank Prof. Jian Ge and Yehong Zhuo for kindly providing the RGC-5 cell line.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xi Ying or Yi Wang.

Additional information

Xi Ying and Yi Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, Y., Zhang, J., Xu, H. et al. Neuroprotective Effect of Protease-Activated Receptor-2 in the Hypoxia-Induced Apoptosis of Rat RGC-5 Cells. J Mol Neurosci 50, 98–108 (2013). https://doi.org/10.1007/s12031-012-9876-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-012-9876-4

Keywords

Navigation