Journal of Molecular Neuroscience

, Volume 50, Issue 1, pp 98–108

Neuroprotective Effect of Protease-Activated Receptor-2 in the Hypoxia-Induced Apoptosis of Rat RGC-5 Cells

Authors

  • Yanli Peng
    • Southwest Hospital, Southwest Eye HospitalThird Military Medical University
    • Key Lab of Visual Damage and Regeneration & Restoration of Chongqing
    • The second affiliated Hospital of Chongqing Medical University
  • Jiaping Zhang
    • State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burns, Southwest Hospital, Third Military Medical University
  • Haiwei Xu
    • Southwest Hospital, Southwest Eye HospitalThird Military Medical University
    • Key Lab of Visual Damage and Regeneration & Restoration of Chongqing
  • Jianrong He
    • Southwest Hospital, Southwest Eye HospitalThird Military Medical University
    • Key Lab of Visual Damage and Regeneration & Restoration of Chongqing
    • Southwest Hospital, Southwest Eye HospitalThird Military Medical University
    • Key Lab of Visual Damage and Regeneration & Restoration of Chongqing
    • Southwest Hospital, Southwest Eye HospitalThird Military Medical University
    • Key Lab of Visual Damage and Regeneration & Restoration of Chongqing
Article

DOI: 10.1007/s12031-012-9876-4

Cite this article as:
Peng, Y., Zhang, J., Xu, H. et al. J Mol Neurosci (2013) 50: 98. doi:10.1007/s12031-012-9876-4

Abstract

Hypoxia-induced apoptosis of retinal ganglion cells (RGCs) is regarded as a pivotal pathological process in various ocular diseases. Protease-activated receptor-2 (PAR-2) is involved in the regulation of cell inflammation, differentiation, and apoptosis in many cell types and tissues, but the role of PAR-2 in RGCs under pathological conditions remains unknown. The purpose of this study was to investigate the role of PAR-2 in the apoptosis of RGCs under hypoxic stress. An immortalized rat RGC line (RGC-5) was exposed to hypoxia (5 % O2). The expression and location of PAR-2 in RGC-5 cells under hypoxia stress were investigated using real-time PCR, western blotting and immunocytochemistry. Cell viability was determined using the Cell Counting Kit-8 assay. Apoptosis was detected using Hoechst 33342 staining and AnnexinV-FITC/PI assays. The role of Bcl-2, Bax, and the active subunit of caspase-3 was also investigated. The results showed that PAR-2 was functionally expressed in RGC-5 cells and up-regulated at both mRNA and protein levels under hypoxic stress. The PAR-2 selective agonist, SLIGRL, rescued RGC-5 cells from hypoxia-induced apoptosis through up-regulation of the Bcl-2/Bax ratio and down-regulation of caspase-3 activation. This study provides the first evidence that PAR-2 has a protective effect against the hypoxia-induced apoptosis of RGC-5 cells.

Keywords

Protease-activated receptor-2RGC-5 cellsHypoxiaApoptosisCaspase-3Bcl-2/Bax ratio

Copyright information

© Springer Science+Business Media, LLC 2012