Skip to main content
Log in

The Effects of Reboxetine Treatment on Depression-like Behavior, Brain Neurotrophins, and ERK Expression in Rats Exposed to Chronic Mild Stress

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Chronic mild stress (CMS) in rats is an established rodent depression model. Antidepressants attenuate the depression-like symptoms and prevent the biochemical changes caused by stress. In the present study, we examined the effect of CMS and the selective norepinephrine reuptake inhibitor (NRI) reboxetine (REB) treatment on behavioral parameters in rats and on hippocampal and cortical neurotrophic factors. Male Sprague Dawley rats were exposed for 5 weeks to a variety of mild stressors. REB (5 mg/kg/i.p.) was daily injected to half of the stressed and unstressed groups. Animal behavior following CMS was tested using the Morris Water Maze (MWM) cognitive paradigm and by monitoring sucrose intake and weight gain. After 5 weeks of CMS, stressed rats showed decreased sucrose intake, and REB treatment normalized this decrease. CMS reduced hippocampal brain-derived neurotrophic factor (BDNF) levels, and REB treatment reversed this alteration and increased BDNF receptor (TrkB) levels. REB elevated hippocampal extracellular signal-regulated kinase (ERK) phosphorylation of both stressed and unstressed rats. In conclusion, our study shows that BDNF, its receptor TrkB, and ERK participate in the neurobiological response to chronic stress and in the molecular and cellular activities of REB in the hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adachi M, Barrot M, Autry AE, Theobald D, Monteggia LM (2008) Selective loss of brain-derived neurotrophic factor in the dentate gyrus attenuates antidepressant efficacy. Biol Psychi 63(7):642–9

    Article  CAS  Google Scholar 

  • Bekris S, Antoniou K, Daskas S, Papadopoulou-Daifoti Z (2005) Behavioural and neurochemical effects induced by chronic mild stress applied to two different rat strains. Behav Brain Res 161(1):45–59

    Article  PubMed  CAS  Google Scholar 

  • Bortolato M, Mangieri RA, Fu J, Kim JH, Arguello O, Duranti A et al (2007) Antidepressant-like activity of the fatty acid amide hydrolase inhibitor URB597 in a rat model of chronic mild stress. Biol Psychiatry 62(10):1103–10

    Article  PubMed  CAS  Google Scholar 

  • Campbell S, Macqueen G (2004) The role of the hippocampus in the pathophysiology of major depression. J Psychiatry Neurosci 29:417–426

    Google Scholar 

  • Choy KH, de Visser Y, Nichols NR, van den Buuse M (2008) Combined neonatal stress and young-adult glucocorticoid stimulation in rats reduce BDNF expression in hippocampus: effects on learning and memory. Hippocampus 18:655–667

    Article  PubMed  CAS  Google Scholar 

  • Duman RS, Monteggia LM (2006) A neurotrophic model for stress-related mood disorders. Biol Psychiatry 59:1116–1127

    Article  PubMed  CAS  Google Scholar 

  • Eyding D, Lelgemann M, Grouven U, Härter M, Kromp M, Kaiser T et al (2010) Reboxetine for acute treatment of major depression: systematic review and meta-analysis of published and unpublished placebo and selective serotonin reuptake inhibitor controlled trials. BMJ 341:c4737

    Article  PubMed  Google Scholar 

  • First M, Gil-Ad I, Taler M, Tarasenko I, Novak N, Weizman A (2011) The effects of fluoxetine treatment in a chronic mild stress rat model on depression-related behavior, brain neurotrophins and ERK expression. J Mol Neurosci 45(2):246–55

    Article  PubMed  CAS  Google Scholar 

  • Gaur V, Kumar A (2010) Behavioral biochemical and cellular correlates in the protective effect of sertraline against transient global ischemia induced behavioral despair: possible involvement of nitric oxide–cyclic guanosine monophosphate study pathway. Brain Res Bull 29(1-2):57–64

    Article  Google Scholar 

  • Gouirand AM, Matuszewich L (2005) The effects of chronic unpredictable stress on male rats in the water maze. Physiol Behav 86:21–31

    Article  PubMed  CAS  Google Scholar 

  • Gourley SL, Wu FJ, Kiraly DD, Ploski JE, Kedves AT, Duman RS et al (2008) Regionally specific regulation of ERK MAP kinase in a model of antidepressant-sensitive chronic depression. Biol Psychiatry 63:353–359

    Article  PubMed  CAS  Google Scholar 

  • Grippo AJ, Francis J, Beltz TG, Felder RB, Johnson AK (2005) Neuroendocrine and cytokine profile of chronic mild stress-induced anhedonia. Physiol Behav 84(5):697–706

    Article  PubMed  CAS  Google Scholar 

  • Grønli J, Bramham C, Murison R, Kanhema T, Fiske E, Bjorvatn B et al (2006) Chronic mild stress inhibits BDNF protein expression and CREB activation in the dentate gyrus but not in the hippocampus proper. Pharmacol Biochem Behav 85:842–9

    Article  PubMed  Google Scholar 

  • Haidkind R, Eller M, Harro M, Kask A, Rinken A, Oreland L et al (2003) Effects of partial locus coeruleus denervation and chronic mild stress on behaviour and monoamine neurochemistry in the rat. Eur Neuropsychopharmacol 13(1):19–28

    Article  PubMed  CAS  Google Scholar 

  • Harkin A, Kelly JP, McNamara M, Connor TJ, Dredge K, Redmond A et al (1999) Activity and onset of action of reboxetine and effect of combination with sertraline in an animal model of depression. Eur J Pharmacol 8;364(2-3):123–132

    Article  Google Scholar 

  • Jacobs BL, van Praag H, Gage FH (2000) Adult brain neurogenesis and psychiatry: a novel theory of depression. Mol Psychiatr 5:262–269

    Article  CAS  Google Scholar 

  • Joëls M, Karst H, Alfarez D, Heine VM, Qin Y et al (2004) Effects of chronic stress on structure and cell function in rat hippocampus and hypothalamus. Stress 7:221–231

    Google Scholar 

  • Johnson-Farley NN, Patel K, Kim D, Cowen DS (2007) Interaction of FGF-2 with IGF-1 and BDNF in stimulating Akt, ERK, and neuronal survival in hippocampal cultures. Brain Res 8:1154:40–9

    Article  Google Scholar 

  • Kappeler L, Zizzari P, Grouselle D, Epelbaum J, Bluet-Pajot MT (2004) Plasma and hypothalamic peptide-hormone levels regulating somatotroph function and energy balance in fed and fasted states: a comparative study in four strains of rats. J Neuroendocrinol 16:980–988

    Article  PubMed  CAS  Google Scholar 

  • Katz NS, Guiard BP, El Mansari M, Blier P (2010) Effects of acute and sustained administration of the catecholamine reuptake inhibitor nomifensine on the firing activity of monoaminergic neurons. J Psychopharmacol 24(8):1223–1235

    Article  PubMed  CAS  Google Scholar 

  • Kosten TA, Galloway MP, Duman RS, Russell DS, D’Sa C (2008) Repeated Unpredictable stress and antidepressants differentially regulate expression of the Bcl-2 family of apoptotic genes in rat cortical, hippocampal, and limbic brain structures. Neuropsychopharmacology 33:1545–1558

    Article  PubMed  CAS  Google Scholar 

  • Larsen MH, Mikkelsen JD, Hay-Schmidt A, Sandi C (2010) Regulation of brain-derived neurotrophic factor (BDNF) in the chronic unpredictable stress rat model and the effects of chronic antidepressant treatment. J Psychiatr Res 44:808–816

    Article  PubMed  Google Scholar 

  • Li S, Wang C, Wang W, Dong H, Hou P, Tang Y (2008) Chronic mild stress impairs cognition in mice: from brain homeostasis to behavior. Life Sci 82:934–42

    Article  PubMed  CAS  Google Scholar 

  • Linnér L, Wiker C, Arborelius L, Schalling M, Svensso TH (2004) Selective noradrenaline reuptake inhibition enhances serotonergic neuronal activity and transmitter release in the rat forebrain. J Neural Transm 111:127–139

    Article  PubMed  Google Scholar 

  • Lopez-Rubalcava C, Lucki I (2000) Strain differences in the behavioral effects of antidepressant drugs in the rat forced swimming test. Neuropsychopharmacology 22:191–199

    Article  PubMed  CAS  Google Scholar 

  • Malberg JE, Eisch AJ, Nestler EJ, Duman RS (2000) Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 15:9104–10

    Google Scholar 

  • Mato S, Vidal R, Castro E, Díaz A, Pazos A, Valdizán EM (2010) Long-term fluoxetine treatment modulates cannabinoid type 1 receptor-mediated inhibition of adenylyl cyclase in the rat prefrontal cortex through 5-hydroxytryptamine 1A receptor-dependent mechanisms. Mol Pharmacol 77:424–434

    Article  PubMed  CAS  Google Scholar 

  • Mebratu Y, Tesfaigzi Y (2009) How ERK1/2 activation controls cell proliferation and cell death: is subcellular localization the answer? Cell Cycle 8:1168–1175

    Article  PubMed  CAS  Google Scholar 

  • Molteni R, Calabrese F, Bedogni F, Tongiorgi E, Fumagalli F, Racagni G et al (2006) Chronic treatment with fluoxetine up-regulates cellular BDNF mRNA expression in rat dopaminergic regions. Int J Neuropsychopharmacol 9:307–317

    Article  PubMed  CAS  Google Scholar 

  • Moreau JL, Scherschlicht R, Jenck F, Martin JR (1995) Chronic mild stress-induced anhedonia model of depression; sleep abnormalities and curative effects of electroshock treatment. Behav Pharmacol 6:682–687

    Article  PubMed  Google Scholar 

  • Musazzi L, Milanese M, Farisello P, Zappettini S, Tardito D, Barbiero VS et al (2010) Acute stress increases depolarization-evoked glutamate release in the rat prefrontal/frontal cortex: the dampening action of antidepressants. PLoS One 5(1):e8566

    Article  PubMed  Google Scholar 

  • Neeley EW, Berger R, Koenig JI, Leonard S (2011) Prenatal stress differentially alters brain-derived neurotrophic factor expression and signaling across rat strains. Neuroscience 187:24–35

    Article  PubMed  CAS  Google Scholar 

  • O’Mahony CM, Clarke G, Gibney S, Dinan TG, Cryan JF (2011) Strain differences in the neurochemical response to chronic restraint stress in the rat: relevance to depression. Pharmacol Biochem Behav 97:690–699

    Article  PubMed  Google Scholar 

  • Pham TM, Soderstrom S, Henriksson BG, Mohammed AH (1997) Effect of neonatal stimulation on later cognitive function and hippocampal nerve growth factor. Behav Brain Res 86:113–120

    Article  PubMed  CAS  Google Scholar 

  • Ratner S, Laor N, Bronstein Y, Weizman A, Toren P (2005) Six-week open-label reboxetine treatment in children and adolescents with attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatr 44:428–33

    Article  Google Scholar 

  • Rodrigues SM, Schafe GE, LeDoux JE (2004) Molecular mechanisms underlying emotional learning and memory in the lateral amygdala. Neuron 44:75–91

    Article  PubMed  CAS  Google Scholar 

  • Russo-Neustadt AA, Alejandre H, Garcia C, Ivy AS, Chen MJ (2004) Hippocampal brain-derived neurotrophic factor expression following treatment with reboxetine, citalopram, and physical exercise. Neuropsychopharmacology 29:2189–2199

    Article  PubMed  CAS  Google Scholar 

  • Sheline YI, Gado MH, Kraemer HC (2003) Untreated depression and hippocampal volume loss. Am J Psychiatry 160:1516–1518

    Article  PubMed  Google Scholar 

  • Skolnick P (1999) Antidepressants for the new millennium. Eur J Pharmacol 375:31–40

    Article  PubMed  CAS  Google Scholar 

  • Song L, Che W, Min-Wei W, Murakami Y, Matsumoto K (2006) Impairment of the spatial learning and memory induced by learned helplessness and chronic mild stress. Pharmacol Biochem Behav 83:186–193

    Article  PubMed  CAS  Google Scholar 

  • Sun CY, Qi SS, Lou XF, Sun SH, Wang X, Dai KY et al (2006) Changes of learning, memory and levels of CaMKII, CaM mRNA, CREB mRNA in the hippocampus of chronic multiple-stressed rats. Chin Med J (Engl) 119:140–7

    CAS  Google Scholar 

  • Szewczyk B, Poleszak E, Wlaź P, Wróbel A, Blicharska E, Cichy A et al (2009) The involvement of serotonergic system in the antidepressant effect of zinc in the forced swim test. Prog Neuropsychopharmacol Biol Psychiatry 17;33:323–329

    Article  Google Scholar 

  • Torres-Aleman I (1999) Insulin-like growth factors as mediators of functional plasticity in the adult brain. Horm Metab Res 31:114–119

    Article  PubMed  CAS  Google Scholar 

  • Trejo JL, Piriz J, Llorens-Martin MV, Fernandez AM, Bolós M, LeRoith D et al (2007) Central actions of liver-derived insulin-like growth factor I underlying its pro-cognitive effects. Mol Psychiatr 12:1118–1128

    Article  CAS  Google Scholar 

  • Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ (2006) Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 9:519–25

    Article  PubMed  CAS  Google Scholar 

  • Vythilingam M, Vermetten E, Anderson GM, Luckenbaugh D, Anderson ER, Snow J et al (2004) Hippocampal volume, memory, and cortisol status in major depressive disorder: effects of treatment. Biol Psychiatry 15;56(2):101–112

    Article  Google Scholar 

  • Walker FR, Naicker S, Hinwood M, Dunn N, Day TA (2009) Strain differences in coping behaviour, novelty seeking behaviour, and susceptibility to socially conditioned fear: a comparison between Wistar and Sprague Dawley rats. Stress 12:507–516

    Article  PubMed  Google Scholar 

  • Wang SH, Zhang ZJ, Guo YJ, Teng GJ, Chen BA (2008) Hippocampal neurogenesis and behavioural studies on adult ischemic rat response to chronic mild stress. Behav Brain Res 189:9–16

    Article  PubMed  Google Scholar 

  • Willner P (1997) Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology 134:319–29

    Article  PubMed  CAS  Google Scholar 

  • Willner P (2005) Chronic mild stress (CMS) revisited: consistency and behavioral-neurobiological concordance in the effects of CMS. Neuropsychobiology 52:90–110

    Article  PubMed  CAS  Google Scholar 

  • Willner P, Towell A, Sampson D, Sophokleous S, Muscat R (1987) Eduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology 93:358–364

    Google Scholar 

  • Wyneken U, Sandoval M, Sandoval S, Jorquera F, González I, Vargas F et al (2006) Clinically relevant doses of fluoxetine and reboxetine induce changes in the TrkB content of central excitatory synapses. Neuropsychopharmacology 31(11):2415–23

    Article  PubMed  CAS  Google Scholar 

  • Zhu WL, Shi HS, Wang SJ, Xu CM, Jiang WG, Wang X et al (2012) Increased Cdk5/p35 activity in the dentate gyrus mediates depressive-like behaviour in rats. Int J Neuropsychopharmacol 15:795–809

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Taler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

First, M., Gil-Ad, I., Taler, M. et al. The Effects of Reboxetine Treatment on Depression-like Behavior, Brain Neurotrophins, and ERK Expression in Rats Exposed to Chronic Mild Stress. J Mol Neurosci 50, 88–97 (2013). https://doi.org/10.1007/s12031-012-9872-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-012-9872-8

Keywords

Navigation