Skip to main content
Log in

Biogenesis and Transport of Secretory Granules to Release Site in Neuroendocrine Cells

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Biogenesis and post-Golgi transport of peptidergic secretory granules to the release site are crucial for secretion of neuropeptides from neuroendocrine cells. Recent studies have uncovered multilevel molecular mechanisms for the regulation of secretory granule biogenesis. Insulinoma-associated protein 2 (ICA512/IA-2), polypyrimidine-tract binding protein, and chromogranin A have been identified to regulate secretory granule biogenesis at the transcriptional, posttranscriptional, and posttranslational levels, respectively, by increasing granule protein levels, which in turn drives granule formation after stimulation. Post-Golgi transport of secretory granules is microtubule-based and mediated by transmembrane carboxypeptidase E (CPE). The cytoplasmic tail of CPE anchors secretory granules to the microtubule motors, kinesin-2 and -3, or dynein, via interaction with the adaptor, dynactin, to mediate anterograde and retrograde transport, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Alexander, K., Nikodemova, M., Kucerova, J., & Strbak, V. (2005). Colchicine treatment differently affects releasable thyrotropin-releasing hormone (TRH) pools in the hypothalamic paraventricular nucleus (PVN) and the median eminence (ME). Cellular and Molecular Neurobiology, 25, 681–695, doi:10.1007/s10571-005-4008-0.

    Article  PubMed  CAS  Google Scholar 

  • Auweter, S. D., & Allain, F. H. (2007). Structure–function relationships of the polypyrimidine tract binding protein. Cellular and Molecular Life Science, 65, 516–527.

    Article  CAS  Google Scholar 

  • Bennett, H. S. (1941). Cytological manifestations of secretion in the adrenal medulla of the cat. The American Journal of Anatomy, 69, 333–381. doi:10.1002/aja.1000690302.

    Article  Google Scholar 

  • Beuret, N., Stettler, H., Renold, A., Rutishauser, J., & Spiess, M. (2004). Expression of regulated secretory proteins is sufficient to generate granule-like structures in constitutively secreting cells. The Journal of Biological Chemistry, 279, 20242–20249, doi:10.1074/jbc.M310613200.

    Article  PubMed  CAS  Google Scholar 

  • Berezuk, M. A., & Schroer, T. A. (2007). Dynactin enhances the processivity of kinesin-2. Traffic, 8, 124–129, doi:10.1111/j.1600-0854.2006.00517.x.

    Article  PubMed  CAS  Google Scholar 

  • Blaschko, H., Comline, R. S., Schneider, F. H., Silver, M., & Smith, A. D. (1967). Secretion of a chromaffin granule protein, chromogranin, from the adrenal gland after splanchnic stimulation. Nature, 215, 58–59, doi:10.1038/215058a0.

    Article  PubMed  CAS  Google Scholar 

  • Bruce, A. W., Donaldson, I. J., Wood, I. C., Yerbury, S. A., Sadowski, M. I., Chapman, M., et al. (2004). Genome-wide analysis of repressor element 1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) target genes. Proceedings of National Academy of Science U S A, 101, 10458–10463, doi:10.1073/pnas.0401827101.

    Article  CAS  Google Scholar 

  • Bruce, A. W., KreJci, A., Ooi, L., Wood, I. C., Dolezal, V., & Buckley, N. J. (2006). The transcriptional repressor REST is a critical regulator of the neurosecretory phenotype. Journal of Neurochemistry, 98, 1828–1840, doi:10.1111/j.1471-4159.2006.04010.x.

    Article  PubMed  CAS  Google Scholar 

  • Calderone, A., Jover, T., Noh, K. M., Tanaka, H., Yokota, H., Lin, Y., et al. (2003). Ischemic insults derepress the gene silencer REST in neurons destined to die. The Journal of Neuroscience, 23, 2112–2121.

    PubMed  CAS  Google Scholar 

  • Chong, J. A., Tapia-Ramirez, J., Kim, S., Toledo-Aral, J. J., Zheng, Y., Boutros, M. C., et al. (1995). RESY: a mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell, 80, 949–957, doi:10.1016/0092-8674(95)90298-8.

    Article  PubMed  CAS  Google Scholar 

  • Cool, D. R., Normant, E., Shen, F., Chen, H. C., Pannell, L., Zhang, Y., & Loh, Y. P. (1997). Carboxypeptidase E is a regulated secretory pathway sorting receptor: genetic obliteration leads to endocrine disorders in Cpe(fat) mice. Cell, 88, 73–83, doi:10.1016/S0092-8674(00)81860-7.

    Article  PubMed  CAS  Google Scholar 

  • Eaton, B. A., Haugwitz, M., Lau, D., & Moore, H. P. (2000). Biogenesis of regulated exocytotic carriers in neuroendocrine cells. Journal of Neuroscience, 20, 7334–7344.

    PubMed  CAS  Google Scholar 

  • Eiden, L. E., Giraud, P., Dave, J. R., Hotchkiss, A. J., & Affolter, H. U. (1984). Nicotinic receptor stimulation activates enkephalin release and biosynthesis in adrenal chromaffin cells. Nature, 312, 661–663, doi:10.1038/312661a0.

    Article  PubMed  CAS  Google Scholar 

  • Dikeakos, J. D., & Reudelhuber, T. L. (2007). Sending proteins to dense core secretory granules: still a lot to sort out. The Journal of Cell Biology, 177, 191–196, doi:10.1083/jcb.200701024.

    Article  PubMed  CAS  Google Scholar 

  • Gauthier, L. R., Charrin, B. C., Borrell-Pages, M., Dompierre, J. P., Rangone, H., Cordelieres, F. P., et al. (2004). Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell, 118, 127–138, doi:10.1016/j.cell.2004.06.018.

    Article  PubMed  CAS  Google Scholar 

  • Gill, S. R., Schroer, T. A., Szilak, I., Steuer, E. R., Sheetz, M. P., & Cleveland, D. W. (1991). Dynactin, a conserved, ubiquitously expressed component of an activator of vesicle motility mediated by cytoplasmic dynein. Journal of Cell Biology, 115, 1639–1650, doi:10.1083/jcb.115.6.1639.

    Article  PubMed  CAS  Google Scholar 

  • Grundschober, C., Malosio, M. L., Astolfi, L., Giordano, T., Nef, P., & Meldolesi, J. (2002). Neurosecretion competence. A comprehensive gene expression program identified in PC12 cells. Journal of Biological Chemistry, 277, 36715–36724 Erratum in: (2002). Journal of Biological Chemistry, 277, 46840. doi:10.1074/jbc.M203777200.

    Article  PubMed  CAS  Google Scholar 

  • Hamm-Alvarez, S. F., Da Costa, S., Yang, T., Wei, X., Gierow, J. P., & Mircheff, A. K. (1997). Cholinergic stimulation of lacrimal acinar cells promotes redistribution of membrane-associated kinesin and the secretory protein, beta-hexosaminidase, and increases kinesin motor activity. Experimental Eye Research, 64, 141–156, doi:10.1006/exer.1996.0198.

    Article  PubMed  CAS  Google Scholar 

  • Harashima, S., Clark, A., Christie, M. R., & Notkins, A. L. (2005). The dense core transmembrane vesicle protein IA-2 is a regulator of vesicle number and insulin secretion. Proceedings of National Academy of Science U S A, 102, 8704–8709, doi:10.1073/pnas.0408887102.

    Article  CAS  Google Scholar 

  • Hiremagalur, B., Nankova, B., Nitahara, J., Zeman, R., & Sabban, E. L. (1993). Nicotine increases expression of tyrosine hydroxylase gene. Involvement of protein kinase A-mediated pathway. The Journal of Biological Chemistry, 268, 23704–23711.

    PubMed  CAS  Google Scholar 

  • Huh, Y. H., Jeon, S. H., & Yoo, S. H. (2003). Chromogranin B-induced secretory granule biogenesis: comparison with the similar role of chromogranin. Journal of Biological Chemistry, 278, 40581–40589. doi:10.1074/jbc.M304942200.

    Article  PubMed  CAS  Google Scholar 

  • Hendy, G. N., Li, T., Girard, M., Feldstein, R. C., Mulay, S., Desjardins, R., et al. (2006). Targeted ablation of the chromogranin a (Chga) gene: normal neuroendocrine dense-core secretory granules and increased expression of other granins. Molecular Endocrinology, 20, 1935–1947, doi:10.1210/me.2005-0398.

    Article  PubMed  CAS  Google Scholar 

  • Hosaka, M., Watanabe, T., Sakai, Y., Uchiyama, Y., & Takeuchi, T. (2002). Identification of a chromogranin A domain that mediates binding to secretogranin III and targeting to secretory granules in pituitary cells and pancreatic beta-cells. Molecular Biology of Cell, 13, 3388–3399, doi:10.1091/mbc.02-03-0040.

    Article  CAS  Google Scholar 

  • Jacob, T. C., & Kaplan, J. M. (2003). The EGL-21 carboxypeptidase E facilitates acetylcholine release at Caenorhabditis elegans neuromuscular junctions. Journal of Neuroscience, 23, 2122–2130.

    PubMed  CAS  Google Scholar 

  • Kalinina, E., Varlamov, O., & Fricker, L. D. (2002). Analysis of the carboxypeptidase D cytoplasmic domain: Implications in intracellular trafficking. Journal of Cellular Biochemistry, 85, 101–111, doi:10.1002/jcb.10112.

    Article  PubMed  CAS  Google Scholar 

  • Kilbourne, E. J., Nankova, B. B., Lewis, E. J., McMahon, A., Osaka, H., Sabban, D. B., et al. (1992). Regulated expression of the tyrosine hydroxylase gene by membrane depolarization. Identification of the responsive element and possible second messengers. The Journal of Biological Chemistry, 267, 7563–7569.

    PubMed  CAS  Google Scholar 

  • Kim, T., Gondre-Lewis, M. C., Arnauotova, I., & Loh, Y. P. (2006). Dense-core secretory granule biogenesis. Physiology (Bethesda), 21, 24–33. doi:10.1152/physiol.00043.2005.

    Google Scholar 

  • Kim, T., & Loh, Y. P. (2006). Protein nexin-1 promotes secretory granule biogenesis by preventing granule protein degradation. Molecular Biology of the Cell, 2, 789–798.

    Google Scholar 

  • Kim, T., Tao-Cheng, J. H., Eiden, L. E., & Loh, Y. P. (2001). Chromogranin A, an “on/off” switch controlling dense-core secretory granule biogenesis. Cell, 106, 499–509, doi:10.1016/S0092-8674(01)00459-7.

    Article  PubMed  CAS  Google Scholar 

  • Knoch, K. P., Bergert, H., Borgonovo, B., Saeger, H. D., Altkruger, A., Verkade, P., et al. (2004). Polypyrimidine tract-binding protein promotes insulin secretory granule biogenesis. Nature Cell Biology, 6, 207–214, doi:10.1038/ncb1099.

    Article  PubMed  CAS  Google Scholar 

  • Kondo, S., Sato-Yoshitake, R., Noda, Y., Aizawa, H., Nakata, T., Matsuura, Y., et al. (1994). KIF3A is a new microtubule-based anterograde motor in the nerve axon. Journal of Cell Biology, 125, 1095–1107, doi:10.1083/jcb.125.5.1095.

    Article  PubMed  CAS  Google Scholar 

  • Loh, Y. P., Maldonado, A., Zhang, C., Tam, W. H., & Cawley, N. (2002). Mechanism of sorting proopiomelanocortin and proenkaphalin to the regulated secretory pathway of neuroendocrine cells. ANNALS of the New York Academy of Sciences, 971, 416–425.

    PubMed  CAS  Google Scholar 

  • Mahapatra, N. R., Mahata, M., O’Connor, D. T., & Mahata, S. K. (2003). Secretin activation of chromogranin A gene transcription. Identification of the signaling pathways in cis and in trans. The Journal of Biological Chemistry, 278, 19986–19994, doi:10.1074/jbc.M207983200.

    Article  PubMed  CAS  Google Scholar 

  • Mahapatra, N. R., O’Connor, D. T., Vaingankar, S. M., HiKim, A. P., Mahata, M., Ray, S., et al. (2005). Hypertension from targeted ablation of chromogranin A can be rescued by the human ortholog. The Journal of Clinical Investigation, 115, 1942–1952, doi:10.1172/JCI24354.

    Article  PubMed  CAS  Google Scholar 

  • Malosio, M. L., Giordano, T., Laslop, A., & Meldolesi, J. (2004). Dense-core granules: a specific hallmark of the neuronal/neurosecretory cell phenotype. Journal of Cell Science, 117, 743–749, doi:10.1242/jcs.00934.

    Article  PubMed  CAS  Google Scholar 

  • Palm, K., Belluardo, N., Metsis, M., & Timmusk, T. (1998). Neuronal expression of zinc finger transcription factor REST/NRSF/XBR gene. Journal of Neuroscience, 18, 1280–1296.

    PubMed  CAS  Google Scholar 

  • Pance, A., Livesey, F. J., & Jackson, A. P. (2006). A role for the transcriptional repressor REST in maintaining the phenotype of neurosecretory-deficient PC12 cells. Journal of Neurochemistry, 99, 1435–1444, doi:10.1111/j.1471-4159.2006.04190.x.

    Article  PubMed  CAS  Google Scholar 

  • Park, J. J., Cawley, N. X., & Loh, Y. P. (2008). Carboxypeptidase E cytoplasmic tail-driven vesicle transport is key for activity-dependent secretion of peptide hormones. Molecular Endocrinology, 22, 989–1005.

    Article  PubMed  CAS  Google Scholar 

  • Rausch, D. M., Iacangelo, A. L., & Eiden, L. E. (1988). Glucocorticoid-and nerve growth factor-induced changes in chromogranin A expression define two different neuronal phenotypes in PC12 cells. Molecular Endocrinology, 2, 921–927.

    Article  PubMed  CAS  Google Scholar 

  • Rudolf, R., Salm, T., Rustom, A., & Gerdes, H. H. (2001). Dynamics of immature secretory granules: role of cytoskeletal elements during transport, cortical restriction, and F-actin-dependent tethering. Molecular Biology of Cell, 12, 1353–1365.

    CAS  Google Scholar 

  • Schoenherr, C. J., & Anderson, D. J. (1995). Silencing is golden: negative regulation in the control of neuronal gene transcription. Current Opinion in Neurobiology, 5, 566–571, doi:10.1016/0959-4388(95)80060-3.

    Article  PubMed  CAS  Google Scholar 

  • Senda, T., & Yu, W. (1999). Kinesin cross-bridges between neurosecretory granules and microtubules in the mouse neurohypophysis. Neuroscience Letter, 262, 69–71, doi:10.1016/S0304-3940(99)00042-7.

    Article  CAS  Google Scholar 

  • Shakiryanova, D., Tully, A., & Levitan, E. S. (2006). Activity-dependent synaptic capture of transiting peptidergic vesicles. Nature Neuroscience, 9, 896–900, doi:10.1038/nn1719.

    Article  PubMed  CAS  Google Scholar 

  • Tang, K., Wu, H., Mahata, S. K., Taupenot, L., Rozansky, D. J., Parmer, R. J., et al. (1996). Stimulus-transcription coupling in pheochromocytoma cells. Promoter region-specific activation of chromogranin a biosynthesis. The Journal of Biological Chemistry, 271, 28382–28390, doi:10.1074/jbc.271.45.28382.

    Article  PubMed  CAS  Google Scholar 

  • Trajkovski, M., Mziaut, H., Altkruger, A., Ouwendijk, J., Knoch, K. P., Muller, S., et al. (2004). Nuclear translocation of an ICA512 cytosolic fragment couples granule exocytosis and insulin expression in beta-cells. The Journal of Cell Biology, 167, 1063–1074, doi:10.1083/jcb.200408172.

    Article  PubMed  CAS  Google Scholar 

  • Varadi, A., Tsuboi, T., Johnson-Cadwell, L. I., Allan, V. J., & Rutter, G. A. (2003). Kinesin I and cytoplasmic dynein orchestrate glucose-stimulated insulin-containing vesicle movements in clonal MIN6 beta-cells. Biochemical and Biophysical Research Communications, 311, 272–282, doi:10.1016/j.bbrc.2003.09.208.

    Article  PubMed  CAS  Google Scholar 

  • Varlamov, O., Kalinina, E., Chen, F. Y., & Fricker, L. D. (2001). Protein phosphatase 2A binds to the cytoplasmic tail of carboxypeptidase D and regulates post-trans-Golgi network trafficking. Journal of Cell Science, 114, 311–322.

    PubMed  CAS  Google Scholar 

  • Yamazaki, H., Nakata, T., Okada, Y., & Hirokawa, N. (1995). KIF3A/B: a heterodimeric kinesin superfamily protein that works as a microtubule plus end-directed motor for membrane organelle transport. Journal of Cell Biology, 130, 1387–1399, doi:10.1083/jcb.130.6.1387.

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki, H., Nakata, T., Okada, Y., & Hirokawa, N. (1996). Cloning and characterization of KAP3: a novel kinesin superfamily-associated protein of KIF3A/3B. Proceedings of National Academy of Science U S A, 93, 8443–8448, doi:10.1073/pnas.93.16.8443.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by the Intramural Research Program of the National Institute of Child Health and Human Development, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Peng Loh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J.J., Koshimizu, H. & Loh, Y.P. Biogenesis and Transport of Secretory Granules to Release Site in Neuroendocrine Cells. J Mol Neurosci 37, 151–159 (2009). https://doi.org/10.1007/s12031-008-9098-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-008-9098-y

Keywords

Navigation