Skip to main content
Log in

Animal Models for Genetic Neuromuscular Diseases

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The neuromuscular disorders are a heterogeneous group of genetic diseases, caused by mutations in genes coding sarcolemmal, sarcomeric, and citosolic muscle proteins. Deficiencies or loss of function of these proteins leads to variable degree of progressive loss of motor ability. Several animal models, manifesting phenotypes observed in neuromuscular diseases, have been identified in nature or generated in laboratory. These models generally present physiological alterations observed in human patients and can be used as important tools for genetic, clinic, and histopathological studies. The mdx mouse is the most widely used animal model for Duchenne muscular dystrophy (DMD). Although it is a good genetic and biochemical model, presenting total deficiency of the protein dystrophin in the muscle, this mouse is not useful for clinical trials because of its very mild phenotype. The canine golden retriever MD model represents a more clinically similar model of DMD due to its larger size and significant muscle weakness. Autosomal recessive limb-girdle MD forms models include the SJL/J mice, which develop a spontaneous myopathy resulting from a mutation in the Dysferlin gene, being a model for LGMD2B. For the human sarcoglycanopahties (SG), the BIO14.6 hamster is the spontaneous animal model for δ-SG deficiency, whereas some canine models with deficiency of SG proteins have also been identified. More recently, using the homologous recombination technique in embryonic stem cell, several mouse models have been developed with null mutations in each one of the four SG genes. All sarcoglycan-null animals display a progressive muscular dystrophy of variable severity and share the property of a significant secondary reduction in the expression of the other members of the sarcoglycan subcomplex and other components of the Dystrophin-glycoprotein complex. Mouse models for congenital MD include the dy/dy (dystrophia-muscularis) mouse and the allelic mutant dy2J/dy2J mouse, both presenting significant reduction of α2-laminin in the muscle and a severe phenotype. The myodystrophy mouse (Largemyd) harbors a mutation in the glycosyltransferase Large, which leads to altered glycosylation of α-DG, and also a severe phenotype. Other informative models for muscle proteins include the knockout mouse for myostatin, which demonstrated that this protein is a negative regulator of muscle growth. Additionally, the stress syndrome in pigs, caused by mutations in the porcine RYR1 gene, helped to localize the gene causing malignant hypertermia and Central Core myopathy in humans. The study of animal models for genetic diseases, in spite of the existence of differences in some phenotypes, can provide important clues to the understanding of the pathogenesis of these disorders and are also very valuable for testing strategies for therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Allamand, V., & Campbell, K. P. (2000). Animal models for muscular dystrophy: Valuable tools for the development of therapies. Human Molecular Genetics, 9, 2459–2467.

    Article  PubMed  CAS  Google Scholar 

  • Araki, E., Nakamura, K., Nakao, K., Kameya, S., Kobayashi, O., Nonaka, I., et al. (1997). Targeted disruption of exon 52 in the mouse dystrophin gene induced muscle degeneration similar to that observed in Duchenne muscular dystrophy. Biochemical And Biophysical Research Communications, 238, 492–497.

    Article  PubMed  CAS  Google Scholar 

  • Barresi, R., Michele, D. E., Kanagawa, M., Harper, H. A., Dovico, S. A., Satz, J. S., et al. (2004). LARGE can functionally bypass alpha- dystroglycan glycosylation defects in distinct congenital muscular dystrophies. Natural Medicines, 10, 696–703.

    Article  CAS  Google Scholar 

  • Bittner, R. E., Anderson, L. V., Burkhardt, E., Bashir, R., Vafiadaki, E., Ivanova, S., et al. (1999). Dysferlin deletion in SJL mice (SJL-Dysf) defines a natural model for limb girdle muscular dystrophy 2B. Nature Genetics, 23, 141–142.

    Article  PubMed  CAS  Google Scholar 

  • Bogdanovich, S., Krag, T. O., Barton, E. R., Morris, L. D., Whittemore, L. A., Ahima, R. S., et al. (2002). Functional improvement of dystrophic muscle by myostatin blockade. Nature, 420, 418–421.

    Article  PubMed  CAS  Google Scholar 

  • Brandom, B. W. (2006). Genetics of Malignant Hyperthermia. The Scientific World Journal, 6, 1722–1730.

    CAS  Google Scholar 

  • Browning, C. A., Grewal, P. K., Moore, C. J., & Hewitt, J. E. (2005). A rapid PCR method for genotyping the Largemyd mouse, a model of glycosylation-deficient congenital muscular dystrophy. Neuromuscular Disorders, 15, 331–335.

    Article  PubMed  Google Scholar 

  • Bulfield, G., Siller, W. G., Wight, P. A. L., & Moore, K. J. (1984). X-Chromosome-linked muscular dystrophy (mdx) in the mouse. Proceedings of the National Academy of Sciences of the United States of America, 81, 1189–1192.

    Article  PubMed  CAS  Google Scholar 

  • Collins, C. A., & Morgan, J. E. (2003). Duchenne's muscular dystrophy: animal models used to investigate pathogenesis and develop therapeutic strategies. International Journal of Experimental Pathology, 84, 165–172.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, B. J., Winand, N. J., Stedman, H., Valentine, B. A., Hoffman, E. P., Kunkel, L. M., et al. (1988). The homologue of the Duchenne locus is defective in X-linked muscular dystrophy of dogs. Nature, 334, 154–156.

    Article  PubMed  CAS  Google Scholar 

  • Cote, P. D., Moukhles, H., Lindenbaum, M., & Carbonetto, S. (1999). Chimaeric mice deficient in dystroglycans develop muscular dystrophy and have disrupted myoneural synapses. Nature Genetics, 23, 338–342.

    Article  PubMed  CAS  Google Scholar 

  • Dangain, J., & Vrbova, G. (1984). Muscle development in (mdx) mutant mice. Muscle & Nerve, 7, 700–704.

    Article  CAS  Google Scholar 

  • Durbeej, M., & Campbell, K. P. (2002). Muscular dystrophies involving the dystrophin-glycoprotein complex: an overview of current mouse models. Current Opinion in Genetics & Development, 12, 349–361.

    Article  CAS  Google Scholar 

  • Ervasti, E., & Campbell, K. P. (1993). A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin. Journal of Cell Biology, 122, 809–823.

    Article  PubMed  CAS  Google Scholar 

  • Fujii, J., Otsu, K., Zorzato, F., Leon, S., de Khanna, V. K., Weiler, J. E., et al. (1991). Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science, 253, 448–451.

    Article  PubMed  CAS  Google Scholar 

  • Grewal, P. K., Holzffeind, P. J., Bittner, R. E., & Hewitt, J. E. (2001). Mutant glycosyltranferase and altered glycosylation of a-dystroglican in the myodystrophy mouse. Nature Genetics, 28, 151–154.

    Article  PubMed  CAS  Google Scholar 

  • Gussoni, E., Soneoka, Y., Strickland, C. D., Buzney, E. A., Khan, M. K., Flint, A. F., et al. (1999). Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature, 401, 390–394.

    PubMed  CAS  Google Scholar 

  • Hoffman, E. P., Brown Jr, R. H., & Kunkel, L. M. (1987). Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell, 51, 919–928.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, E. P., Morgan, J. E., Watkins, S. C., & Partridge, T. A. (1990). Somatic reversion/suppression of the mouse mdx phenotype in vivo. Journal of The Neurological Sciences, 99, 9–25.

    Article  PubMed  CAS  Google Scholar 

  • Holt, K. H., Crosbie, R. H., Venzke, D. P., & Campbell, K. P. (2000). Biosynthesis of dystroglycan: processing of a precursor propeptide. FEBS Letters, 468, 79–83.

    Article  PubMed  CAS  Google Scholar 

  • Mosher, D. S., Quignon, P., Bustamante, C. D., Sutter, N. B., Ellersh, C. S., Parker, H. G., et al. (2007). A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genetics, 3, 779–786.

    Article  CAS  Google Scholar 

  • Muntoni, F., Brockington, M., Torelli, S., & Brown, S. C. (2004). Defective glycosylation in congenital muscular dystrophies. Current Opinion in Neurology, 17, 205–209.

    Article  PubMed  CAS  Google Scholar 

  • Ohlendieck, K., & Campbell, K. P. (1991). Dystrophin-associated proteins are greatly reduced in skeletal muscle from mdx mice. Journal of Cell Biology, 115, 1685–1694.

    Article  PubMed  CAS  Google Scholar 

  • Patel, K., & Amthor, H. (2005). The function of Myostatin and strategies of Myostatin blockade-new hope for therapies aimed at promoting growth of skeletal muscle. Neuromuscular Disorders, 15, 117–126.

    Article  PubMed  CAS  Google Scholar 

  • Shelton, D. G., & Engvall, E. (2005). Canine and feline models of human inherited muscle diseases. Neuromuscular Diseases, 15, 127–138.

    Article  Google Scholar 

  • Sicinski, P., Geng, Y., Ryder-Cook, A. S., Barnard, E. A., Darlison, M. G., & Barnard, P. J. (1989). The molecular basis of muscular dystrophy in the mdx mouse. A point mutation. Science, 244, 1578–1580.

    Article  PubMed  CAS  Google Scholar 

  • Straub, V., & Campbell, K. P. (1997). Muscular dystrophies and the dystrophin-glycoprotein complex. Current Opinion in Neurology, 10, 168–175.

    Article  PubMed  CAS  Google Scholar 

  • Straub, V., Duclos, F., Venzke, D. P., Lee, J. C., Cutshall, S., Leveille, C. J., et al. (1998). Molecular pathogenesis of muscle degeneration in the delta-sarcoglycan-deficient hamster. American Journal of Pathology, 153, 1623–1630.

    PubMed  CAS  Google Scholar 

  • Sunada, Y., Bernier, S. M., Utani, A., Yamada, Y., & Campbell, K. P. (1995). Identification of a novel mutant transcript of laminin α2 chain gene responsible for muscular dystrophy and dysmyelination in dy2J mice. Human Molecular Genetics, 4, 1055–1061.

    Article  PubMed  CAS  Google Scholar 

  • Tome, F. M., Evangelista, T., Leclerc, A., Sunada, Y., Manole, E., Estournet, B., et al. (1994). Congenital muscular dystrophy with merosin deficiency. Comptes Rendus De l'AcadeÂmie Des Sciences III, 317, 351–357.

    CAS  Google Scholar 

  • Vainzof, M., Zatz, M. (2007). Muscular dystrophies and protein mutations. In: Uversky VN and Fink AL (Eds) Protein misfolding, aggregation, and conformational diseases. Part B: Molecular mechanisms of conformational diseases. In: Zouhair Atassi (Ed.) Series protein reviews, vol. 6, Springer, USA, pp 391–403.

  • Valentine, B. A., Winand, N. J., Pradhan, D., Moise, N. S., de Lahunta, A., Kornegay, J. N., et al. (1992). Canine X-linked muscular dystrophy as an animal model of Duchenne muscular dystrophy: a review. American Journal of Medical Genetics, 42, 352–356.

    Article  PubMed  CAS  Google Scholar 

  • Vilquin, J-T., vignier, N., Tremblay, J. P., Engvall, E., Schwartz, K., & Fiszman, M. (2000). Identification of homozygous and heterozygous dy2j mice by PCR. Neuromuscular Disorders, 10, 59–62.

    Article  PubMed  CAS  Google Scholar 

  • Williamson, R. A., Henry, M. D., Daniels, K. J., Hrstka, R. F., Lee, J. C., Sunada, Y., et al. (1997). Dystroglycan is essential for early embryonic development: disruption of Reichert's membrane in Dag1-null mice. Human Molecular Genetics, 6, 831–841.

    Article  PubMed  CAS  Google Scholar 

  • Xu, H., Wu, X-R., Wewer, U. M., & Engvall, E. (1994). Murine muscular dystrophy caused by a mutation in the laminin a2 (Lama2) gene. Nature Genetics, 8, 297–301.

    Article  PubMed  CAS  Google Scholar 

  • Yang, T., Riehl, J., Esteve, E., Matthael, K. I., Goth, S., Allen, P. D., et al. (2006). Pharmacologic and Funcional characterization of malignant hyperthermia in the R163C RYR1 knock-in mouse. Anestesiology, 105, 1164–1175.

    Article  CAS  Google Scholar 

  • Yoshida, M., & Ozawa, E. (1990). Glycoprotein complex anchoring dystrophin to sarcolemma. Journal of Biochemistry, 108, 748–752.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The collaboration of the following people is gratefully acknowledged: Dr. Mayana Zatz, Dr. Claudia M. Mori, Dr. Silvia M.G. Massironi, Dr. Miriam F. Suzuki, Dr. Rita C.M.Pavanello, Dr. Ivo Pavanello, Dr. Helga CA Silva, Dr. Maria Rita Passos-Bueno, Dr. Maria Angélica Miglino, Dr. Carlos Eduardo Ambrosio, Dr. José Xavier Neto, Dr. José Roberto Kfoury, Viviane P. Muniz, Giselle Izzo, Áurea Martins, Natassia Vieira, Eder Zucconi, Denise Carvalho, and Mariane Secco. We would also like to thank Marta Cánovas for her invaluable technical help. This work was supported by grants from FAPESP-CEPID, PRONEX, and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariz Vainzof.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vainzof, M., Ayub-Guerrieri, D., Onofre, P.C.G. et al. Animal Models for Genetic Neuromuscular Diseases. J Mol Neurosci 34, 241–248 (2008). https://doi.org/10.1007/s12031-007-9023-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-007-9023-9

Keywords

Navigation