Skip to main content
Log in

A Matter of Identity: Transcriptional Control in Oligodendrocytes

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Oligodendrocyte development progresses from specification to terminal differentiation through several phases. By now, a number of transcription factors have been identified that are essential for one or more of these phases. They stem from transcription factor families with known roles in many developmental processes. Basic helix–loop–helix, homeodomain, and high-mobility-group containing transcription factors such as the Olig, Nkx, and Sox proteins have been particularly well studied. A complex picture has emerged in which these transcription factors interact in transcriptional networks and thereby combine and influence their respective activities as repressors or activators in such a way that stage- and cell-type specific gene expression is achieved during oligodendrocyte development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Arnett, H. A., Fancy, S. P., Alberta, J. A., Zhao, C., Plant, S. R., Kaing, S., et al. (2004). bHLH transcription factor Olig1 is required to repair demyelinated lesions in the CNS. Science, 306, 2111–2115.

    Article  PubMed  CAS  Google Scholar 

  • Baas, D., Legrand, C., Samarut, J., & Flamant, F. (2002). Persistence of oligodendrocyte precursor cells and altered myelination in optic nerve associated to retina degeneration in mice devoid of all thyroid hormone receptors. Proceedings of the National Academy of Sciences of the United States of America, 99, 2907–2911.

    Article  PubMed  CAS  Google Scholar 

  • Barres, B. A., Lazar, M. A., & Raff, M. C. (1994). A novel role for thyroid hormone, glucocorticoids and retinoic acid in timing oligodendrocyte development. Development, 120, 1097–1108.

    PubMed  CAS  Google Scholar 

  • Battiste, J., Helms, A. W., Kim, E. J., Savage, T. K., Lagace, D. C., Mandyam, C. D., et al. (2006). Ascl1 defines sequentially generated lineage-restricted neuronal and oligodendrocyte precursor cells in the spinal cord. Development, 134, 285–293.

    Article  PubMed  Google Scholar 

  • Billon, N., Tokumoto, Y., Forrest, D., & Raff, M. (2001). Role of thyroid hormone receptors in timing oligodendrocyte differentiation. Developmental Biology, 235, 110–120.

    Article  PubMed  CAS  Google Scholar 

  • Bondurand, N., Girard, M., Pingault, V., Lemort, N., Dubourg, O., & Goossens, M. (2001). Human Connexin 32, a gap junction protein altered in the X-linked form of Charcot-Marie-Tooth disease, is directly regulated by the transcription factor SOX10. Human Molecular Genetics, 10, 2783–2795.

    Article  PubMed  CAS  Google Scholar 

  • Cai, J., Chen, Y., Cai, W. H., Hurlock, E. C., Wu, H., Kernie, S. G., et al. (2007). A crucial role for Olig2 in white matter astrocyte development. Development, 134, 1887–1899.

    Article  PubMed  CAS  Google Scholar 

  • Cai, J., Qi, Y., Hu, X., Tan, M., Liu, Z., Zhang, J., et al. (2005). Generation of oligodendrocyte precursor cells from mouse dorsal spinal cord independent of Nkx6 regulation and Shh signaling. Neuron, 45, 41–53.

    Article  PubMed  CAS  Google Scholar 

  • Deneen, B., Ho, R., Lukaszewicz, A., Hochstim, C. J., Gronostajski, R. M., & Anderson, D. J. (2006). The transcription factor NFIA controls the onset of gliogenesis in the developing spinal cord. Neuron, 52, 953–968.

    Article  PubMed  CAS  Google Scholar 

  • Fogarty, M., Richardson, W. D., & Kessaris, N. (2005). A subset of oligodendrocytes generated from radial glia in the dorsal spinal cord. Development, 132, 1951–1959.

    Article  PubMed  CAS  Google Scholar 

  • Fu, H., Qi, Y., Tan, M., Cai, J., Takebayashi, H., Nakafuku, M., et al. (2002). Dual origin of spinal oligodendrocyte progenitors and evidence for the cooperative role of Olig2 and Nkx2.2 in the control of oligodendrocyte differentiation. Development, 129, 681–693.

    PubMed  CAS  Google Scholar 

  • Genoud, S., Lappe-Siefke, C., Goebbels, S., Radtke, F., Aguet, M., Scherer, S. S., et al. (2002). Notch1 control of oligodendrocyte differentiation in the spinal cord. Journal of Cell Biology, 158, 709–718.

    Article  PubMed  CAS  Google Scholar 

  • Gokhan, S., Marin-Husstege, M., Yung, S. Y., Fontanez, D., Casaccia-Bonnefil, P., & Mehler, M. F. (2005). Combinatorial profiles of oligodendrocyte-selective classes of transcriptional regulators differentially modulate myelin basic protein gene expression. Journal of Neuroscience, 25, 8311–8321.

    Article  PubMed  CAS  Google Scholar 

  • He, Y., Dupree, J., Wang, J., Sandoval, J., Li, J., Liu, H., et al. (2007). The transcription factor Yin Yang 1 is essential for oligodendrocyte progenitor differentiation. Neuron, 55, 217–230.

    Article  PubMed  CAS  Google Scholar 

  • Kamachi, Y., Uchikawa, M., & Kondoh, H. (2000). Pairing SOX off: with partners in the regulation of embryonic development. Trends in Genetics, 16, 182–187.

    Article  PubMed  CAS  Google Scholar 

  • Kellerer, S., Schreiner, S., Stolt, C. C., Bösl, M. R., & Wegner, M. (2006). Functional equivalency of transcription factors Sox8 and Sox10 is tissue-specific. Development, 133, 2875–2886.

    Article  PubMed  CAS  Google Scholar 

  • Kessaris, N., Fogarty, M., Iannarelli, P., Grist, M., Wegner, M., & Richardson, W. D. (2006). Competition waves of oligodendrocytes in the forebrain and postnatal elimination of an early embryonic lineage. Nature Neuroscience, 9, 173–179.

    Article  PubMed  CAS  Google Scholar 

  • Kessaris, N., Pringle, N., & Richardson, W. D. (2001). Ventral neurogenesis and the neuron-glial switch. Neuron, 31, 677–680.

    Article  PubMed  CAS  Google Scholar 

  • Kondo, T., & Raff, M. C. (2000). The Id4 HLH protein and the timing of oligodendrocyte differentiation. EMBO Journal, 19, 1998–2007.

    Article  PubMed  CAS  Google Scholar 

  • Kuhlbrodt, K., Herbarth, B., Sock, E., Hermans-Borgmeyer, I., & Wegner, M. (1998). Sox10, a novel transcriptional modulator in glial cells. Journal of Neuroscience, 18, 237–250.

    PubMed  CAS  Google Scholar 

  • LeBlanc, S. E., Ward, R. M., & Svaren, J. (2007). Neuropathy-associated Egr2 mutants disrupt cooperative activation of myelin protein zero by Egr2 and Sox10. Molecular and Cellular Biology, 27, 3521–3529.

    Article  PubMed  CAS  Google Scholar 

  • Liu, R., Cai, J., Hu, X., Tan, M., Qi, Y., German, M., et al. (2003). Region-specific and stage-dependent regulation of Olig gene expression and oligodendrogenesis by Nkx6.1 homeodomain transcription factor. Development, 130, 6221–6231.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Z., Hu, X., Cai, J., Liu, B., Peng, X., Wegner, M., et al. (2007). Induction of oligodendrocyte differentiation by Olig2 and Sox10: evidence for reciprocal interactions and dosage-dependent mechanisms. Developmental Biology, 302, 683–693.

    Article  PubMed  CAS  Google Scholar 

  • Liu, A., Li, J., Marin-Husstege, M., Kageyama, R., Fan, Y., Gelinas, C., et al. (2006). A molecular insight of Hes5-dependent inhibition of myelin gene expression: old partners and new players. EMBO Journal, 25, 4833–4842.

    Article  PubMed  CAS  Google Scholar 

  • Lu, Q. R., Sun, T., Zhu, Z., Ma, N., Garcia, M., Stiles, C. D., et al. (2002). Common developmental requirement for olig function indicates a motor neuron/oligodendrocyte connection. Cell, 109, 75–86.

    Article  PubMed  CAS  Google Scholar 

  • Lu, Q. R., Yuk, D., Alberta, J. A., Zhu, Z., Pawlitzky, I., Chan, J., et al. (2000). Sonic hedgehog-regulated oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system. Neuron, 25, 317–329.

    Article  PubMed  CAS  Google Scholar 

  • Marin-Husstege, M., He, Y., Li, J., Kondo, T., Sablitzky, F., & Casaccia-Bonnefil, P. (2006). Multiple roles of Id4 in developmental myelination: predicted outcomes and unexpected findings. Glia, 54, 285–296.

    Article  PubMed  Google Scholar 

  • Masahira, N., Takebayashi, H., Ono, K., Watanabe, K., Ding, L., Furusho, M., et al. (2006). Olig2-positive progenitors in the embryonic spinal cord give rise not only to motoneurons and oligodendrocytes, but also to a subset of astrocytes and ependymal cells. Developmental Biology, 293, 358–369.

    Article  PubMed  CAS  Google Scholar 

  • Mizuguchi, R., Sugimori, M., Takebayashi, H., Kosako, H., Nagao, M., Yoshida, S., et al. (2001). Combinatorial roles of olig2 and neurogenin2 in the coordinated induction of panneuronal and subtype-specific properties of motoneurons. Neuron, 31, 757–771.

    Article  PubMed  CAS  Google Scholar 

  • Nieto, M., Schuurmans, C., Britz, O., & Guillemot, F. (2001). Neural bHLH genes control the neuronal versus glial fate decision in cortical progenitors. Neuron, 29, 401–413.

    Article  PubMed  CAS  Google Scholar 

  • Novitch, B. G., Chen, A. I., & Jessell, T. M. (2001). Coordinate regulation of motoneuron subtype identity and pan-neuronal properties by the bHLH repressor Olig2. Neuron, 31, 773–789.

    Article  PubMed  CAS  Google Scholar 

  • Park, H. C., & Appel, B. (2003). Delta-notch signaling regulates oligodendrocyte specification. Development, 130, 3747–3755.

    Article  PubMed  CAS  Google Scholar 

  • Parras, C. M., Hunt, C., Sugimori, M., Nakafuku, M., Rowitch, D. H., & Guillemot, F. (2007). The proneural gene Mash1 specifies an early population of telencephalic oligodendrocytes. Journal of Neuroscience, 27, 4233–4242.

    Article  PubMed  CAS  Google Scholar 

  • Petryniak, M. A., Potter, G. B., Rowitch, D. H., & Rubenstein, J. L. R. (2007). Dlx1 and Dlx2 control neuronal versus oligodendroglial cell fate acquisition in the developing forebrain. Neuron, 55, 417–433.

    Article  PubMed  CAS  Google Scholar 

  • Qi, Y., Cai, J., Wu, Y., Wu, R., Lee, J., Fu, H., et al. (2001). Control of oligodendrocyte differentiation by the Nkx2.2 homeodomain transcription factor. Development, 128, 2723–2733.

    PubMed  CAS  Google Scholar 

  • Richardson, W. D., Kessaris, N., & Pringle, N. (2006). Oligodendrocyte wars. Nature Reviews Neuroscience, 7, 11–18.

    Article  PubMed  CAS  Google Scholar 

  • Rowitch, D. H. (2004). Glial specification in the vertebrate neural tube. Nature Reviews Neuroscience, 5, 409–419.

    Article  PubMed  CAS  Google Scholar 

  • Samanta, J., & Kessler, J. A. (2004). Interactions between ID and OLIG proteins mediate the inhibitory effects of BMP4 on oligodendroglial differentiation. Development, 131, 4131–4142.

    Article  PubMed  CAS  Google Scholar 

  • Schlierf, B., Werner, T., Glaser, G., & Wegner, M. (2006). Expression of Connexin47 in oligodendrocytes is regulated by the Sox10 transcription factor. Journal of Molecular Biology, 361, 11–21.

    Article  PubMed  CAS  Google Scholar 

  • Sock, E., Schmidt, K., Hermanns-Borgmeyer, I., Bösl, M. R., & Wegner, M. (2001). Idiopathic weight reduction in mice deficient in the high-mobility-group transcription factor Sox8. Molecular and Cellular Biology, 21, 6951–6959.

    Article  PubMed  CAS  Google Scholar 

  • Sohn, J., Natale, J., Chew, L. J., Belachew, S., Cheng, Y., Aguirre, A., et al. (2006). Identification of Sox17 as a transcription factor that regulates oligodendrocyte development. Journal of Neuroscience, 26, 9722–9735.

    Article  PubMed  CAS  Google Scholar 

  • Soula, C., Danesin, C., Kan, P., Grob, M., Poncet, C., & Cochard, P. (2001). Distinct sites of origin of oligodendrocytes and somatic motoneurons in the chick spinal cord: oligodendrocytes arise from Nkx2.2-expressing progenitors by a Shh-dependent mechanism. Development, 128, 1369–1379.

    PubMed  CAS  Google Scholar 

  • Southwood, C., He, C., Garbern, J., Kamholz, J., Arroyo, E., & Gow, A. (2004). CNS myelin paranodes require Nkx6-2 homeoprotein transcriptional activity for normal structure. Journal of Neuroscience, 24, 11215–11225.

    Article  PubMed  CAS  Google Scholar 

  • Stolt, C. C., Lommes, P., Friedrich, R. P., & Wegner, M. (2004). Transcription factors Sox8 and Sox10 perform non-equivalent roles during oligodendrocyte development despite functional redundancy. Development, 131, 2349–2358.

    Article  PubMed  CAS  Google Scholar 

  • Stolt, C. C., Lommes, P., Sock, E., Chaboissier, M.-C., Schedl, A., & Wegner, M. (2003). The Sox9 transcription factor determines glial fate choice in the developing spinal cord. Genes and Development, 17, 1677–1689.

    Article  PubMed  CAS  Google Scholar 

  • Stolt, C. C., Rehberg, S., Ader, M., Lommes, P., Riethmacher, D., Schachner, M., et al. (2002). Terminal differentiation of myelin-forming oligodendrocytes depends on the transcription factor Sox10. Genes and Development, 16, 165–170.

    Article  PubMed  CAS  Google Scholar 

  • Stolt, C. C., Schlierf, A., Lommes, P., Hillgärtner, S., Werner, T., Kosian, T., et al. (2006). SoxD proteins influence multiple stages of oligodendrocyte development and modulate SoxE protein function. Developmental Cell, 11, 697–710.

    Article  PubMed  CAS  Google Scholar 

  • Stolt, C. C., Schmitt, S., Lommes, P., Sock, E., & Wegner, M. (2005). Impact of transcription factor Sox8 on oligodendrocyte specification in the mouse embryonic spinal cord. Developmental Biology, 281, 323–331.

    Article  Google Scholar 

  • Sugimori, M., Nagao, M., Bertrand, N., Parras, C. M., Guillemot, F., & Nakafuku, M. (2007). Combinatorial actions of patterning and HLH transcription factors in the spatiotemporal control of neurogenesis and gliogenesis in the developing spinal cord. Development, 134, 1617–1629.

    Article  PubMed  CAS  Google Scholar 

  • Sun, T., Dong, H., Wu, L., Kane, M., Rowitch, D. H., & Stiles, C. D. (2003). Cross-repressive interaction of Olig2 and Nkx2.2 transcription factors in developing neural tube associated with formation of a specific physical complex. Journal of Neuroscience, 23, 9547–9556.

    PubMed  CAS  Google Scholar 

  • Sun, T., Pringle, N. P., Hardy, A. P., Richardson, W. D., & Smith, H. K. (1998). Pax6 influences the time and site of origin of glial precursors in the ventral neural tube. Molecular and Cellular Neurosciences, 12, 228–239.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, M. K., Yeager, K., & Morrison, S. J. (2007). Physiological notch signaling promotes gliogenesis in the developing peripheral and central nervous systems. Development, 134, 2435–2447.

    Article  PubMed  CAS  Google Scholar 

  • Vallstedt, A., Klos, J. M., & Ericson, J. (2005). Multiple dorsoventral origins of oligodendrocyte generation in the spinal cord and hindbrain. Neuron, 45, 55–67.

    Article  PubMed  CAS  Google Scholar 

  • Wang, S. Z., Dulin, J., Wu, H., Hurlock, E., Lee, S. E., Jansson, K., et al. (2006). An oligodendrocyte-specific zinc-finger transcription regulator cooperates with Olig2 to promote oligodendrocyte differentiation. Development, 133, 3389–3398.

    Article  PubMed  CAS  Google Scholar 

  • Wang, S., Sdrulla, A., Johnson, J. E., Yokota, Y., & Barres, B. A. (2001). A role for the helix–loop–helix protein Id2 in the control of oligodendrocyte development. Neuron, 29, 603–614.

    Article  PubMed  CAS  Google Scholar 

  • Wegner, M. (1999). From head to toes: the multiple facets of Sox proteins. Nucleic Acids Research, 27, 1409–1420.

    Article  PubMed  CAS  Google Scholar 

  • Wegner, M. (2000a). Transcriptional control in myelinating glia: flavors and spices. Glia, 31, 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Wegner, M. (2000b). Transcriptional control in myelinating glia: the basic recipe. Glia, 29, 118–123.

    Article  PubMed  CAS  Google Scholar 

  • Wegner, M. (2005). Secrets to a healthy Sox life: Lessons for melanocytes. Pigment Cell Research, 18, 74–85.

    Article  PubMed  CAS  Google Scholar 

  • Wegner, M., & Stolt, C. C. (2005). From stem cells to neurons and glia: a soxist’s view of neural development. Trends in Neurosciences, 28, 583–588.

    Article  PubMed  CAS  Google Scholar 

  • Xin, M., Yue, T., Ma, Z., Wu, F. F., Gow, A., & Lu, Q. R. (2005). Myelinogenesis and axonal recognition by oligodendrocytes in brain are uncoupled in Olig1-null mice. Journal of Neuroscience, 25, 1354–1365.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi, H., Zhou, C., Lin, S. C., Durand, B., Tsai, S. Y., & Tsai, M. J. (2004). The nuclear orphan receptor COUP-TFI is important for differentiation of oligodendrocytes. Developmental Biology, 266, 238–251.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, Q., & Anderson, D. J. (2002). The bHLH transcription factors olig2 and olig1 couple neuronal and glial subtype specification. Cell, 109, 61–73.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, Q., Choi, G., & Anderson, D. J. (2001). The bHLH transcription factor Olig2 promotes oligodendrocyte differentiation in collaboration with Nkx2.2. Neuron, 31, 791–807.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, Q., Wang, S., & Anderson, D. J. (2000). Identification of a novel family of oligodendrocyte lineage-specific basic helix–loop–helix transcription factors. Neuron, 25, 331–343.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Deutsche Forschungsgemeinschaft (We1326/8-1 and SFB473), the Schram-Stiftung (T287/14172/2004), and the Fonds der Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Wegner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wegner, M. A Matter of Identity: Transcriptional Control in Oligodendrocytes. J Mol Neurosci 35, 3–12 (2008). https://doi.org/10.1007/s12031-007-9008-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-007-9008-8

Keywords

Navigation