Skip to main content

Advertisement

Log in

Synthesis and evaluation of 2-(3′-lodo-4′-aminophenyl)-6-hydroxybenzothiazole for in vivo quantitation of amyloid deposits in alzheimer’s disease

  • Early Detection Of Cognitive Impairment
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

A potent and brain permeable amyloid ligand has been identified as a lead compound capable of I-123/125-labelling for single photon emission computed tomography (SPECT) imaging. In this study, we report the synthesis and I-125-radiolabelling of Compound 6 and its in vitro and in vivo properties. Compound 6 [2-(3′-iodo-4′-aminophenyl)-6-hydroxybenzothiazole] bound to synthetic Aβ(1–40) fibrils in a saturable manner, exhibiting an affinity (Ki) of 11±1.1 nM in a competitive binding assay using a tritiated thioflavin T analog ([3H]BTA-1) as radioligand. [125I]6 binding to synthetic Aβ(1–40) fibrils fit a single-site model. [125I]6 exhibited several-fold higher binding to homogenates of frontal cortex from post-mortem Alzheimer’s disease brain relative to age-matched control brain homogenates. No difference in binding was observed in cerebellum. The ratio of radioactivity concentration between frontal cortex and cerebellum was 6-fold higher in AD brain homogenates than the age-matched control. [125I]6 also readily penetrated the blood-brain barrier in normal control mice with an average radioactivity concentration of 6.43 ± 0.62%ID/g detected in the whole brain at 2 min post i.v. injection. At 30 min, the radioactivity concentration decreased to 0.40 ± 0.05%ID/g, indicating good clearance in the absence of amyloid deposits in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • De Strooper B. and Konig G. (1999) Alzheimer’s disease: a firm base for drug development. Nature 402(6761), 471–472.

    Article  PubMed  CAS  Google Scholar 

  • Frenkel D., Katz O., and Solomon B. (2000) Immunization against Alzheimer’s β-amyloid plaques via EFRH phage administration. Proc. Natl. Acad. Sci. USA 97(21), 11455–11459.

    Article  PubMed  CAS  Google Scholar 

  • Friedland R. P., Majocha R. E., Reno J. M., Lyle L. R., and Marotta C. A. (1994) Development of an anti-Aβ monoclonal antibody for in vivo imaging of amyloid angiopathy in Alzheimer’s disease. Mol. Neurobiol. 9(1–3), 107–113.

    PubMed  CAS  Google Scholar 

  • Hardy J. A. and Higgins G. A. (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256(5054), 184–185.

    Article  PubMed  CAS  Google Scholar 

  • Janus C., Pearson J., McLaurin J., Mathews P. M., Jiang Y., Schmidt S. D., et al. (2000) Aβ peptide immunization reduces behavioral impairment and plaques in a model of Alzheimer’s disease. Nature 408(6815), 979–982.

    Article  PubMed  CAS  Google Scholar 

  • Klunk W. E., Debnath M. L., and Pettegrew J. W. (1994) Development of small molecule probes for the β-amyloid protein of Alzheimer’s disease.” Neurobiol. Aging 15(6), 691–698.

    Article  PubMed  CAS  Google Scholar 

  • Klunk W. E., Wang Y. M., Hung G. F., Debnah M. L., Holt D. P., and Mathis C. A. (2001) Uncharged thioflavin-T derivatives bind to amyloid-β protein with high affinity and readily enter the brain. Life Sci. 69, 1471–1484.

    Article  PubMed  CAS  Google Scholar 

  • Mathis C. A., Bacskai B. J., Kajdasz S. T., et al. (2002) A lipophilic thioflavin-T derivative for positron emission tomography (PET) imaging in brain. Bioorg. Med. Comm. 12, 295–298.

    Article  CAS  Google Scholar 

  • Mochizuki A., Peterson J. W., Mufson E. J., and Trapp B. D. (1996) Amyloid load and neural elements in Alzheimer’s disease and nondemented individuals with high amyloid plaque density. Exp. Neurol. 142(1), 89–102.

    Article  PubMed  CAS  Google Scholar 

  • Naslund J., Haroutunian V., Mohs R., Davis K. L., Davies P., Greengard P., and Buxbaum J. D. (2000) Correlation between elevated levels of amyloid β-peptide in the brain and cognitive decline. JAMA 283(12), 1571–1577.

    Article  PubMed  CAS  Google Scholar 

  • Octave J. N. (1995). The amyloid peptide and its precursor in Alzheimer’s disease. Rev. Neurosci. 6(4), 287–316.

    PubMed  CAS  Google Scholar 

  • Schenk D. B., Seubert P., Lieberburg I., and Wallace J. (2000) β-Peptide immunization: a possible new treatment for Alzheimer disease. Arch. Neurol. 57(7), 934–936.

    Article  PubMed  CAS  Google Scholar 

  • Selkoe D. J. (2000) Imaging Alzheimer’s amyloid. Nature Biotechnol. 18(8), 823–4.

    Article  CAS  Google Scholar 

  • Selkoe D. J. (2000) Toward a comprehensive theory for Alzheimer’s disease. Hypothesis: Alzheimer’s disease is caused by the cerebral accumulation and cytotoxicity of amyloid β-protein. Ann. NY Acad. Sci. 924, 17–25.

    Article  PubMed  CAS  Google Scholar 

  • Skovronsky D. M., Zhang B., Kung M. P., Kung H. F., Trojanowski J. Q., and Lee V. M. (2000) In vivo detection of amyloid plaques in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 97(13), 7609–14.

    Article  PubMed  CAS  Google Scholar 

  • Styren S. D., Hamilton R. L., Styren G. C., and Klunk W. E. (2000) X-34, a fluorescent derivative of Congo red: a novel histochemical stain for Alzheimer’s disease pathology. J. Histochem. Cytochem. 48(9), 1223–1232.

    PubMed  CAS  Google Scholar 

  • Varadarajan S., Yatin S., Aksenova M., and Butterfield D. A. (2000) Review: Alzheimer’s amyloid-β peptide-associated free radical oxidative stress and neurotoxicity. J. Struct. Biol. 130(2–3), 184–208.

    Article  PubMed  CAS  Google Scholar 

  • Wang Y. M., Klunk W. E., Huang G.-F., Debnah M. L., Holt D. P., and Mathis C. A. (2001) Synthesis and evaluation of a radioiodinated benzothiazole derivative as a radioligand for in vivo quantitation of β-amyloid deposits in aging and Alzheimer’s disease. J. Labelled Compounds Radiopharmaceut. 44(Suppl.1), S239-S241.

    Google Scholar 

  • Wengenack T. M., Curran G. L., and Poduslo J. F. (2000) Targeting Alzheimer amyloid plaques in vivo. Nature Biotechnol. 18(8), 868–872.

    Article  CAS  Google Scholar 

  • Wolfe M. S., Citron M., Diehl T. S., Xia W., Donkor I. O., and Selkoe D. J. (1998). A substrate-based difluoro ketone selectively inhibits Alzheimer’s γ-secretase activity. J. Med. Chem. 41(1), 6–9.

    Article  PubMed  CAS  Google Scholar 

  • Zhuang Z. P., Kung M. P., Hou C., Skovronsky D. M., Gur T. L., Plossl K., et al. (2001). Radioiodinated styrylbenzenes and thioflavins as probes for amyloid aggregates. J. Med. Chem. 44(12), 1905–1914.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanming Wang.

Additional information

Dedicated to Dr. Hong-Sun Uh, President of E-Sung Chemicals Co. Ltd., on the occasion of his 65th birthday, with admiration of a great teacher and friend.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Klunk, W.E., Huang, GF. et al. Synthesis and evaluation of 2-(3′-lodo-4′-aminophenyl)-6-hydroxybenzothiazole for in vivo quantitation of amyloid deposits in alzheimer’s disease. J Mol Neurosci 19, 11–16 (2002). https://doi.org/10.1007/s12031-002-0004-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-002-0004-8

Index Entries

Navigation