Skip to main content
Log in

Biosynthesis of Stable Polyshaped Gold Nanoparticles from Microwave-Exposed Aqueous Extracellular Anti-malignant Guava (Psidium guajava) Leaf Extract

  • Published:
NanoBiotechnology

Abstract

Addition of microwave-exposed aqueous extracellular anti-malignant guava (Psidium guajava) leaf extract to the aqueous gold chloride solution yielded stable polyshaped gold nanoparticles of high composition. Microwave-assisted route selected for the preparation of aqueous guava leaf extract was to suppress the enzymatic action. The formation of nanoparticles was understood from the UV–visible and X-ray diffraction studies. The size and shape analysis was done using field emission scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. Zeta potential experiment shows that the bio-functionalized gold nanoparticles colloidal solution obtained as above will maintain its stability even after 30 weeks of storage. It is observed that the flavonoids which are separated during microwave heating of extracellular solution of the guava leaves are responsible for the biosynthesis of gold nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chen C, Sandra CM, Oyelere AK. Gold nanoparticles: From nanomedicine to nanosensing. Nanotechnology, Science and Applications. 2008;1:45.

    CAS  Google Scholar 

  2. Salata OV. Application of nanoparticles in biology and medicine. J Nanobiotechnology. 2004;2:3.

    Article  PubMed  Google Scholar 

  3. El-Sayed M. Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. Acc Chem Res. 2004;37(5):326.

    Article  CAS  PubMed  Google Scholar 

  4. Kim F, Connor S, Song H, Kuykendall T, Yang P. Platonic gold nanocrystals. Angew Chem. 2004;116:3759.

    Article  Google Scholar 

  5. Yakimovich NO, Ezhevskii AA, Guseinov DV, Smirnova LA, Gracheva TA, Klychkov KS. Antioxidant properties of gold nanoparticles studied by ESR spectroscopy. Russ Chem Bull. 2008;57(3):520.

    Article  CAS  Google Scholar 

  6. Jing-Liang L, Wang L, Xiang-Yang L, Zhang Z, Hong-Chen G, Wei-Min L, et al. In vitro cancer cell imaging and therapy using transferrin-conjugated gold nanoparticles. Cancer Lett. 2009;27(2):319.

    Google Scholar 

  7. Sperling RA, PR Gil PR, Zhang F, Zanella M, Parak WJ. Biological applications of gold nanoparticle. Chem Soc Rev. 2008;37:1896.

    Article  CAS  PubMed  Google Scholar 

  8. Greenfield AS. Biotechnology, the brain and the future. Trends Biotech. 2005;23(1):34.

    Article  CAS  Google Scholar 

  9. Kevin B. Shape Matters for Nanoparticles; Technology published by MIT review; 2008.

  10. Gobin MA, Lee MH, Naomi JH, William DJ, Rebekah AD, Jennifer LW. Near- infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett. 2007;7(7):1929.

    Article  CAS  PubMed  ADS  Google Scholar 

  11. Bertussi B, Natoli JY, Commandre M, Rullier JL, Bonneau F, Combis P, et al. Photothermal investigation of the laser-induced modification of a single gold nano-particle in a silica film. Opt Commun. 2005;254(4):299.

    Article  CAS  ADS  Google Scholar 

  12. Kannan R, Rahing V, Cutler CS, Pandrapragada RK, Katti KK, Kattumuri VJ, et al. Nanocompatible chemistry toward fabrication of target-specific gold nanoparticles. J Am Chem Soc. 2006;128:11342.

    Article  CAS  PubMed  Google Scholar 

  13. Rinaldo P, Matteo G, Maila S. Nanosystems, in inorganic and bio-inorganic chemistry. In: Bertini I, editor. Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO. Oxford, UK: Eolss Publishers 2006.

    Google Scholar 

  14. Jianqiang H, Zhouping H, Jinghong L. Gold nanoparticles with special shapes: controlled synthesis, surface-enhanced Raman scattering, and the application in biodetection. Sensors. 2007;7:3299.

    Article  Google Scholar 

  15. He L, Musick MD, Nicewarner SR, Salinas FG, Benkovic SJ, Natan MJ, et al. Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization. J Am Chem Soc. 2000;122:9071.

    Article  CAS  Google Scholar 

  16. Maxwell DJ, Taylor JR, Nie SM. Self-assembled nanoparticle probes for recognition and detection of biomolecules. J Am Chem Soc. 2002;124:9606.

    Article  CAS  PubMed  Google Scholar 

  17. Haynes CA, Nordle W. Globular proteins at solid/liquid interfaces. Coll Surf B: Biointerfaces. 1994;2:517.

    Article  CAS  Google Scholar 

  18. Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, et al. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Coll Surf B: Biointerfaces. 2008;28:313.

    Article  Google Scholar 

  19. Basavaraja S, Balaji SD, Lagashetty A, Rajasab AH, Venkataraman A. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater Res Bull. 2008;43:1164.

    Article  CAS  Google Scholar 

  20. Balaji DS, Basavaraja S, Raghunandan D, DB Mahesh D, Venkataraman A. Biosynthesis and stabilization of Au and Au–Ag alloy nanoparticles by fungus, Fusarium semitectum. Sci Technol Adv Mater. 2008;9:035012.

    Article  Google Scholar 

  21. Balaji DS, Basavaraja S, Raghunandan D, Mahesh B, Prabhakar BK, Venkataraman A. Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Coll Surf B: Biointerfaces. 2009;68(1):88.

    Article  CAS  Google Scholar 

  22. Gardea-Torresdey LJ, Gomez E, Peralta-Videa RJ, Parsons JG, Troiani H, Jose-Yacaman M. Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir. 2003;19(4):1357.

    Article  CAS  Google Scholar 

  23. Shiv Shankar S, Rai A, Ahmad A, Sastry M. Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci. 2004;275(2):496.

    Article  PubMed  Google Scholar 

  24. Kawakami Y, Nakamura T, Hosokawa T, Suzuki-Yamamoto T, Yamashita H, Kimoto M, et al. Antiproliferative activity of guava leaf extract via inhibition of prostaglandin endoperoxide H synthase isoforms. Prostaglandins, Leukot Essent Fat Acids. 2009;80(5-6):239.

    Article  CAS  Google Scholar 

  25. Manosroi J, Dhumtanom P, Manosroi A. Antiproliferative activity of essential oil extracted from Thai medicinal plants on KB and P388 cell lines. Cancer Lett. 2006;235:114.

    Article  CAS  PubMed  Google Scholar 

  26. Chen KC, Hsieh CL, Peng CC, Hsieh-Li HM, Chiang HS, Huang KD, et al. Brain derived metastatic prostate cancer DU-145 cells are effectively inhibited in vitro by guava (Psidium gujava L.) leaf extracts. 58(1). Nutr Cancer. 2007;58:93.

    CAS  PubMed  Google Scholar 

  27. Gutierrez RM, Mitchell S, Solaris RV. Psidium guajava: A review of its traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol. 2008;117(1):1.

    Article  CAS  PubMed  Google Scholar 

  28. Choi SY, Hwang JH, Park SY, Jin YJ, Ko HC, Moon SW, et al. Fermented guava leaf extract inhibits LPS-induced COX-2 and iNOS expression in mouse macrophage cells by inhibition of transcription factor NF-kB. Phytother Res. 2008;22:1030.

    Article  PubMed  Google Scholar 

  29. Mulvaney P. Surface plasmon spectroscopy of nanosized metal particles. Langmuir. 1996;12:788.

    Article  CAS  Google Scholar 

  30. Robert BB, David JB, Toca-Herrera LJ, Blake AW, Smith DA, Radford SE, et al. Force mode atomic force microscopy as a tool for protein folding studies. Anal Chim Acta. 2003;479(1):87.

    Article  Google Scholar 

  31. Suganya T, Ikegami F, Okonogi S. Antioxidant active principles isolated from Psidium guajava grown in Thailand. Sci Pharm. 2007;75:179.

    Article  Google Scholar 

  32. Begum S, Hassan SI, Ali SN, Siddiqui BS. Chemical constituents from the leaves of Psidium guajava. Nat Prod Res. 2004;18(2):135.

    Article  CAS  PubMed  Google Scholar 

  33. Zeta potential of colloids in water and waste water, ASTM standard D 4187-82, American society for testing and materials, 1985.

Download references

Acknowledgments

Financial supports from DST (grant no.SR/S1/PC-10/2005), UGC (D.O. no.F.14-4/2001 (Innov.Policy/ASIST)), and BRNS, DAE (no. 2009/34/BRNS) are acknowledged. We thank Prof. G. U. Kulkarni for fruitful guidance and Selvi Rajan, JNCASR Bangalore for FESEM measurements. We are grateful to Prof. Manohar Badiger (NCL, Pune) for zeta potential measurements. Raghunandan Deshpande thanks Dr. Appala Raju, Principal of HKES College of pharmacy, Gulbarga for encouraging the research program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Venkataraman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raghunandan, D., Basavaraja, S., Mahesh, B. et al. Biosynthesis of Stable Polyshaped Gold Nanoparticles from Microwave-Exposed Aqueous Extracellular Anti-malignant Guava (Psidium guajava) Leaf Extract. Nanobiotechnol 5, 34–41 (2009). https://doi.org/10.1007/s12030-009-9030-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12030-009-9030-8

Keywords

Navigation