Skip to main content
Log in

Advances in Nano Biotic/Abiotic Hybrid Systems: Protein-Based Engineered Devices

  • Published:
NanoBiotechnology

Abstract

Integrative nanobiotechnology utilizes natural ideas and materials for manufacturing nanoscale devices. As living organisms traditionally represent a good model for engineers to learn from, biological components of interest, with optimal functionality, have been used in the creation of biotic/abiotic hybrid devices. As an example, bacteriorhodopsin/F0F1-ATP-synthase-incorporated polymer vesicles provide a model of hybrid protein/artificial synthetic membrane system to perform biological functions. Some potential applications are the construction of intervesicular/intravesicular communications, such as excitable vesicles (EVs), for biocomputer and biomolecular motor-powered nanoelectromechanical systems (NEMS) for nanomedicine. Finally, advanced biotic/abiotic hybrid technology is expected to provide an alternative method to conventional fabrication technology to meet the increasing demands by saving enormous engineering efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Feynman RP. Eng Sci 1960;23:22–36.

    Google Scholar 

  2. Moore G-E. Electronics 1965;38:114–7.

    Google Scholar 

  3. Hwang C-G. Proc IEEE 2003;91(11):1765–71.

    Article  Google Scholar 

  4. Lanyi JK, Pohorille A. Trends Biotechnol 2001;19(4):140–4.

    Article  CAS  Google Scholar 

  5. Pennathur S, Eijkel JCT, van den Berg A. Lab Chip 2007;7:1234–7.

    Article  CAS  Google Scholar 

  6. Drexler KE. Nanosystems. New York, NY: Wiley; 1992.

    Google Scholar 

  7. Drexler KE. Proc Nat Acad Sci USA 1981;78(9):5275–8.

    Article  CAS  Google Scholar 

  8. Szoka F, Papahadjopoulos D. Ann Rev Biophys Bioeng 1980;9:467–508.

    Article  CAS  Google Scholar 

  9. Eytan GD. Biochem Biophys Acta 1982;694:185–202.

    CAS  Google Scholar 

  10. Coronado R. Ann Rev Biophys Biophys Chem 1986;15:259–77.

    Article  CAS  Google Scholar 

  11. Tien HT, Salamon Z. Bioelectrochem Bioenerg 1989;22:211–5.

    Article  CAS  Google Scholar 

  12. Salamon Z, Wang Y, Tollin G, Macleod HA. Biochim Biophys Acta 1994;1195:267–75.

    Article  Google Scholar 

  13. Tien HT, Ottova AL. J Membr Sci 2001;189:83–117.

    Article  CAS  Google Scholar 

  14. Walde P, Ichikawa S. Biomol Eng 2001;18:143–77.

    Article  CAS  Google Scholar 

  15. Collier JH, Messersmith PB. Annu Rev Mater Res 2001;31:237–63.

    Article  CAS  Google Scholar 

  16. Rigaud J-L, Lévy D. Methods Enzymol 2003;372:65–86.

    Article  CAS  Google Scholar 

  17. Discher DE, Eisenberg A. Science 2002;297(5583):967–73.

    Article  CAS  Google Scholar 

  18. Nardin C, Hirt T, Leukel J, Meier W. Langmuir 2000;16:1035–41.

    Article  CAS  Google Scholar 

  19. Nardin C, Thoeni S, Widmer J, Winterhalter M, MeierW. Chem Commun. 2000;1433–4.

  20. Nardin C, Winterhalter M, Meier W. Langmuir 2000;16:7708–12.

    Article  CAS  Google Scholar 

  21. Sauer M, Haefele T, Graff A, Nardin C, Meier W. Chem Commun. 2001;2452–3.

  22. Graff A, Sauer M, Gelder PV, Meier W. Proc Natl Acad Sci USA 2002;99:5064–8.

    Article  CAS  Google Scholar 

  23. Stoenescu R, Meier W. Chem Commun. 2002;2016–7.

  24. Stoenescu R, Graff A, Meier W. Macromol Biosci 2004;4:930–5.

    Article  CAS  Google Scholar 

  25. Hammer DA, Discher DE. Annu Rev Mater Res 2001;31:387–404.

    Article  CAS  Google Scholar 

  26. Antonietti M, Förster S. Adv Mater 2003;15(16):1323–33.

    Article  CAS  Google Scholar 

  27. Kita-Tokarczyk K, Grumelard, J, Haefele T, Meier W. Polymer 2005;46:3540–63.

    Article  CAS  Google Scholar 

  28. Mitchell P. Nature 1961;191:144–8.

    Article  CAS  Google Scholar 

  29. Mitchell P. Biol Rev Camb Philos Soc 1966;41:445–502.

    Article  CAS  Google Scholar 

  30. Choi H-J, Montemagno CD. Nano Lett 2005;5:2538–42.

    Article  CAS  Google Scholar 

  31. Choi H-J, Germain J, Montemagno CD. Nanotechnology 2006;17:1825–30.

    Article  CAS  Google Scholar 

  32. Soong RK, Bachand GD, Neves HP, Olkhovets AG, Craighead HG, Montemagno CD. Science 2000;290:1555–8.

    Article  CAS  Google Scholar 

  33. Schmidt JJ, Montemagno CD. DDT 2002;7(9):500–3.

    Google Scholar 

  34. Wendell DW. PhD thesis, UCLA, Los Angeles, CA; 2006.

  35. Montemagno CD. Ann NY Acad Sci 2004;1013:38–49.

    Article  Google Scholar 

  36. Harris AL. Q Rev Biophys 2001;34(3):325–472.

    CAS  Google Scholar 

  37. Ramundo-Orlando A, Serafino A, Villalobo A. Arch Biochem Biophys 2005;436:128–35.

    Article  CAS  Google Scholar 

  38. Koch C. The quest for consciousness: a neurobiological approach.Englewood, CO: Roberts and Company Publishers; 2004.

    Google Scholar 

  39. Crick F, Koch C. Nature 1998;391:245–50.

    Article  CAS  Google Scholar 

  40. Kahana MJ, Sekuler R, Caplan JB, Kirschen M, Madsen JR. Nature 1999;399:781–4.

    Article  CAS  Google Scholar 

  41. De Rosa M, Gambacorta A, Nicolaus B. J Membrane Sci 1983;16:287–94.

    Article  Google Scholar 

  42. De Rosa M, Gambacorta A, Gliozzi A. Microbiol Rev 1986;50:70–80.

    Google Scholar 

  43. De Rosa M, Gambacorta A. Prog Lipid Res 1988;27:153–75.

    Article  Google Scholar 

  44. Elferink MGL, de Wit JG, Demel R, Driessen AJM, Konings WN. J Biol Chem 1992;267:1375–81.

    CAS  Google Scholar 

  45. Elferink MGL, van Breemen J, Konings WN, Driessen AJM, Wilschut J. Chem Phys Lipids 1997;88:37–43.

    Article  CAS  Google Scholar 

  46. Hara M, Yuan H, Yang Q, Hoshino T, Yokoyama A, Miyake J. Biochim Biophys Acta 1999;1461:147–54.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Jeffrey Germain for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo D. Montemagno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, HJ., Wendell, D. & Montemagno, C.D. Advances in Nano Biotic/Abiotic Hybrid Systems: Protein-Based Engineered Devices. Nanobiotechnol 3, 66–75 (2007). https://doi.org/10.1007/s12030-008-9008-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12030-008-9008-y

Keywords

Navigation