Skip to main content
Log in

Nanoneedle Surface Modification with 2-Methacryloyloxyethyl Phosphorylcholine Polymer to Reduce Nonspecific Protein Adsorption in a Living Cell

  • Published:
NanoBiotechnology

Abstract

Previously, we developed a new molecular delivery system to target single living cells by using atomic force microscope and ultrathin needle referred to as nanoneedle. This system delivers molecules into the cell by attaching them to the surface of nanoneedle. However, nonspecific protein adsorption on the nanoneedle surface inside the living cells limits the range of application of this system. In the present study, we focused on nonspecific protein adsorption onto the nanoneedle surface inside the cells and examined whether this protein adsorption was reduced by modifying the nanoneedle surface with a biocompatible phospholipid polymer containing 2-methacryloyloxyethyl phosphorylcholine (MPC) unit. MPC polymer coating of the surface of silicon wafer reduced nonspecific adsorption of proteins from liver extracts and prevented the formation of clot-like protein aggregates. MPC polymer also decreased nonspecific adsorption of cytosolic protein onto the nanoneedle surface inside the living cell. On the other hand, MPC polymer showed no effect on nonspecific mechanical interaction between nanoneedle and the cell components. Surface modification with MPC polymer is a useful technique to modify the surface properties of nanoneedle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. King R. Gene delivery to mammalian cells by microinjection. Methods Mol Biol. 2004;245:167–74.

    CAS  Google Scholar 

  2. Knoblauch M, Hibberd JM, Gray JC, van Bel AJ. A galinstan expansion femtosyringe for microinjection of eukaryotic organelles and prokaryotes. Nat Biotechnol. 1999;17:906–9.

    Article  CAS  Google Scholar 

  3. Han S, Nakamura C, Obataya I, Nakamura N, Miyake J. Gene expression using an ultrathin needle enabling accurate displacement and low invasiveness. Biochem Biophys Res Commun. 2005;332:633–9.

    Article  CAS  Google Scholar 

  4. Obataya I, Nakamura C, Han S, Nakamura N, Miyake J. Mechanical sensing of the penetration of various nanoneedles into a living cell using atomic force microscopy. Biosens Bioelectron. 2005;20:1652–5.

    Article  CAS  Google Scholar 

  5. Obataya I, Nakamura C, Han S, Nakamura N, Miyake J. Nanoscale operation of a living cell using an atomic force microscope with a nanoneedle. Nano Lett. 2005;5:27–30.

    Article  CAS  Google Scholar 

  6. Han SW, Nakamura C, Obataya I, Nakamura N, Miyake J. A molecular delivery system by using AFM and nanoneedle. Biosens Bioelectron. 2005;20:2120–5.

    Article  CAS  Google Scholar 

  7. Obataya I, Nakamura C, Han S, Nakamura N, Miyake J. Direct insertion of proteins into a living cell using an atomic force microscope with a nanoneedle. NanoBiotechnology. 2005;1:347–52.

    Article  CAS  Google Scholar 

  8. Tsuruta T. Contemporary topics in polymeric materials for biomedical applications. In: Abe A, editor. Biopolymers liquid crystalline polymers phase emulsion. Berlin: Springer; 1996. p. 33.

    Google Scholar 

  9. Ishihara K, Ueda T, Nakabayashi N. Preparation of phospholipid polymers and their properties as polymer hydrogel membranes. Polym J. 1990;22:355–60.

    Article  CAS  Google Scholar 

  10. Ishihara K, Nomura H, Mihara T, Kurita K, Iwasaki Y, Nakabayashi N. Why do phospholipid polymers reduce protein adsorption? J Biomed Mater Res. 1998;39:323–30.

    Article  CAS  Google Scholar 

  11. Kitano H, Imai M, Mori T, Gemmei-Ide M, Yokoyama Y, Ishihara K. Structure of water in the vicinity of phospholipid analogue copolymers as studied by vibrational spectroscopy. Langmuir. 2003;19:10260–6.

    Article  CAS  Google Scholar 

  12. Moro T, Takatori Y, Ishihara K, Konno T, Takigawa Y, Matsushita T, et al. Surface grafting of artificial joints with a biocompatible polymer for preventing periprosthetic osteolysis. Nat Mater. 2004;3:829–36.

    Article  CAS  Google Scholar 

  13. Watanabe J, Ishihara K. Cell engineering biointerface focusing on cytocompatibility using phospholipid polymer with an isomeric oligo(lactic acid) segment. Biomacromolecules. 2005;6:1797–802.

    Article  CAS  Google Scholar 

  14. Goda T, Ishihara K. Soft contact lens biomaterials from bioinspired phospholipid polymers. Expert Rev Med Devices. 2006;3:167–74.

    Article  CAS  Google Scholar 

  15. Masson JF, Battaglia TM, Cramer J, Beaudoin S, Sierks M, Booksh KS. Reduction of nonspecific protein binding on surface plasmon resonance biosensors. Anal Bioanal Chem. 2006;386:1951–9.

    Article  CAS  Google Scholar 

  16. Konno T, Hasuda H, Ishihara K, Ito Y. Photo-immobilization of a phospholipid polymer for surface modification. Biomaterials. 2005;26:1381–8.

    Article  CAS  Google Scholar 

  17. Sibarani J, Takai M, Ishihara K. Surface modification on microfluidic devices with 2-methacryloyloxyethyl phosphorylcholine polymers for reducing unfavorable protein adsorption. Colloids Surf B Biointerfaces. 2007;54:88–93.

    Article  CAS  Google Scholar 

  18. Zhang X, Moy VT. Cooperative adhesion of ligand–receptor bonds. Biophys Chemist. 2003;104:271–8.

    Article  CAS  Google Scholar 

  19. Iwasaki Y, Nakabayashi N, Nakatani M, Mihara T, Kurita K, Ishihara K. Competitive adsorption between phospholipid and plasma protein on a phospholipid polymer surface. J Biomater Sci Polym Ed. 1999;10:513–29.

    CAS  Google Scholar 

  20. Bam NB, Cleland JL, Randolph TW. Molten globule intermediate of recombinant human growth hormone: stabilization with surfactants. Biotechnol Prog. 1996;12:801–9.

    Article  CAS  Google Scholar 

  21. Konno T, Watanabe J, Ishihara K. Conjugation of enzymes on polymer nanoparticles covered with phosphorylcholine groups. Biomacromolecules. 2004;5:342–7.

    Article  CAS  Google Scholar 

  22. Miyamoto D, Watanabe J, Ishihara K. Effect of water-soluble phospholipid polymers conjugated with papain on the enzymatic stability. Biomaterials. 2004;25:71–6.

    Article  CAS  Google Scholar 

  23. Sakai-Kato K, Kato M, Ishihara K, Toyo'oka T. An enzyme-immobilization method for integration of biofunctions on a microchip using a water-soluble amphiphilic phospholipid polymer having a reacting group. Lab Chip. 2004;4:4–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was partially supported by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan (Research and Development in a New Converting Field Based on Nanotechnology and Materials Sciences to JM and 19770163 to TK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Miyake.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kihara, T., Yoshida, N., Mieda, S. et al. Nanoneedle Surface Modification with 2-Methacryloyloxyethyl Phosphorylcholine Polymer to Reduce Nonspecific Protein Adsorption in a Living Cell. Nanobiotechnol 3, 127–134 (2007). https://doi.org/10.1007/s12030-008-9002-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12030-008-9002-4

Keywords

Navigation