Skip to main content
Log in

Caspase-Cleaved Cytokeratin 18 Fragment M30 as a Potential Biomarker of Macrovascular Invasion in Hepatocellular Carcinoma

  • Original Research
  • Published:
Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

Background and Aim

Extremely poor prognosis in hepatocellular carcinoma (HCC) patients with progressing disease was denoted by vascular invasion. Cytokeratin 18 (CK18) has been shown to be overexpressed in hepatocellular carcinoma so it is a valuable tumor marker; however, its role in vascular invasion is still unclear. This study aimed to predict CK18 as a predictive marker for macrovascular malignant invasion.

Methods

The present study was conducted on three groups of patients: group I included 91 HCC patients without macrovascular invasion, group II included 34 HCC patients with radiological evidence of vascular invasion, and group III included 110 control individuals subdivided into IIIA as healthy blood donors and IIIB as post-HCV cirrhotic patients without HCC.

Results

ROC curve of M30 fragments of CK18 was constructed for discrimination between HCC with and without macrovascular invasion. Optimum cutoff value was 304.5 ng/mL (AUC = 0.997, P < 0.001), sensitivity (100%) and specificity (98.8%). Regression analysis was conducted for prediction of macrovascular invasion within HCC patients. The following variables: higher levels of AST, M30, bilirubin, and AFP, lower levels of serum albumin, larger tumor size, child B score, and multiple lesions were associated with vascular invasion in univariate analysis. While in multivariate analysis, higher levels of AST and bilirubin and elevated levels of M30 and AFP serum were considered independent predictors for macrovascular invasion in HCC patients.

Conclusion

The present study suggests that increased M30 fragments of CK18 levels may be useful as a possible marker of early tumor invasiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Maillard E. Epidemiology, natural history and pathogenesis of hepatocellular carcinoma. Cancer Radiother. 2011;15:3–6.

    Article  PubMed  CAS  Google Scholar 

  2. Nagashima I, Hamada C, Naruse K, et al. Surgical resection for small hepatocellular carcinoma. Surgery. 1996;119:40–5.

    Article  PubMed  CAS  Google Scholar 

  3. Seki T, Wakabayashi M, Nakagawa T, et al. Ultrasonically guided percutaneous microwave coagulation therapy for small hepatocellular carcinoma. Cancer. 1994;74:817–25.

    Article  PubMed  CAS  Google Scholar 

  4. Choi D, Lim HK, Rhim H, et al. Percutaneous radiofrequency ablation for early-stage hepatocellular carcinoma as a first-line treatment: long-term results and prognostic factors in a large single-institution series. Eur Radiol. 2007;17:684–92.

    Article  PubMed  Google Scholar 

  5. Giannelli G, Pierri F, Trerotoli P, et al. Occurrence of portal vein tumor thrombus in hepatocellular carcinoma affects prognosis and survival. A retrospective clinical study of 150 cases. Hepatol Res. 2002;24:50.

    Article  PubMed  Google Scholar 

  6. Zhou YM, Yang JM, Li B, et al. Risk factors for early recurrence of small hepatocellular carcinoma after curative resection. Hepatobiliary Pancreat Dis Int. 2010;9(1):33–7.

    PubMed  Google Scholar 

  7. Jonas S, Bechstein WO, Steinmüller T, et al. Vascular invasion and histopathologic grading determine outcome after liver transplantation for hepatocellular carcinoma in cirrhosis. Hepatology. 2001;33:1080–6.

    Article  PubMed  CAS  Google Scholar 

  8. Choi JY, Lee JM, Sirlin CB. CT and MR imaging diagnosis and staging of hepatocellular carcinoma. Part I. Development, growth, and spread: key pathologic and imaging aspects. Radiology. 2014;272(3):635–54.

    Article  PubMed  Google Scholar 

  9. Van Eyken P, Desmet VJ. Cytokeratins and the liver. Liver. 1993;13:113–22.

    Article  PubMed  CAS  Google Scholar 

  10. Morris KL, Tugwood JD, Khoja L, et al. Circulating biomarkers in hepatocellular carcinoma. Cancer Chemother Pharmacol. 2014;74(2):323–32.

    Article  PubMed  CAS  Google Scholar 

  11. Linder S, Havelka AM, Ueno T, Shoshan MC. Determining tumor apoptosis and necrosis in patient serum using cytokeratin 18 as a biomarker. Cancer Lett. 2004;214:1–9.

    Article  PubMed  CAS  Google Scholar 

  12. Fabregat I, Roncero C, Fernandez M. Survival and apoptosis: a dysregulated balance in liver cancer. Liver Int. 2007;27:155–62.

    Article  PubMed  CAS  Google Scholar 

  13. Patel T. Immune escape in hepatocellular cancer: is a good offense the best defense? Hepatology. 1999;30:576–8.

    Article  PubMed  CAS  Google Scholar 

  14. Elalfy H, Besheer T, El-Hussiny MA, et al. Risk of early hepatocellular carcinoma recurrence after curative ablation: association with cytokeratine 18. Int J Adv Res. 2015;3(3):1194–206.

    CAS  Google Scholar 

  15. Ünal E, İdilman IS, Akata D, Özmen MN, Karçaaltıncaba M. Microvascular invasion in hepatocellular carcinoma. Diagn Interv Radiol. 2016;22(2):125–132. doi:10.5152/dir.2016.15125.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lim KC, Chow PK, Allen JC, et al. Microvascular invasion is a better predictor of tumor recurrence and overall survival following surgical resection for hepatocellular carcinoma compared to the Milan criteria. Ann Surg. 2011;254:108–13. [CrossRef]

    Article  PubMed  Google Scholar 

  17. Shah SA, Greig PD, Gallinger S, et al. Factors associated with early recurrence after resection for hepatocellular carcinoma and outcomes. J Am Coll Surg. 2006;202:275–83. [CrossRef]

    Article  PubMed  Google Scholar 

  18. Sumie S, Kuromatsu R, Okuda K, et al. Microvascular invasion in patients with hepatocellular carcinoma and its predictable clinicopathological factors. Ann Surg Oncol. 2008;15:1375–82. [CrossRef]

    Article  PubMed  Google Scholar 

  19. Taylor-Robinson SD, Foster GR, Arora S, Hargreaves S, Thomas HC. Increase in primary liver cancer in the UK, 1979-94. Lancet. 1997;350:1142–3.

    Article  PubMed  CAS  Google Scholar 

  20. International Agency for Cancer Research. GLOBOCAN 2002. http://www-dep.iarc.fr. Accessed 20 Jan 2010.

  21. Umemura T, Ichijo T, Yoshizawa K, Tanaka E, Kiyosawa K. Epidemiology of hepatocellular carcinoma in Japan. J Gastroenterol. 2009;44(Suppl 19):102–7.

    Article  PubMed  Google Scholar 

  22. Asaoka Y, Tateishi R, Nakagomi R, et al. Frequency of and predictive factors for vascular invasion after radiofrequency ablation for hepatocellular carcinoma. PLoS One. 2014;9:e111662.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Matsumata T, Kanematsu T, Takenaka K, Yoshida Y, Nishizaki T, Sugimachi K. Patterns of intrahepatic recurrence after curative resection of hepatocellular carcinoma. Hepatology. 1989;9:457–60.

    Article  PubMed  CAS  Google Scholar 

  24. Toyosaka A, Okamoto E, Mitsunobu M, Oriyama T, Nakao N, Miura K. Pathologic and radiographic studies of intrahepatic metastasis in hepatocellular carcinoma; the role of efferent vessels. HPB Surg. 1996;10:97–103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Yamamoto J, Kosuge T, Takayama T, et al. Recurrence of hepatocellular carcinoma after surgery. Br J Surg. 1996;83:1219–22.

    Article  PubMed  CAS  Google Scholar 

  26. Choi KK, Kim SH, Choi SB, et al. Portal venous invasion: the single most independent risk factor for immediate postoperative recurrence of hepatocellular carcinoma. J Gastroenterol Hepatol. 2011;26:1646–51.

    Article  PubMed  Google Scholar 

  27. Kaibori M, Ishizaki M, Matsui K, Kwon AH. Predictors of microvascular invasion before hepatectomy for hepato-cellular carcinoma. J Surg Oncol. 2010;102:462–8.

    Article  PubMed  CAS  Google Scholar 

  28. Kim BK, Han KH, Park YN, et al. Prediction of microvascular invasion before curative resection of hepatocellular carcinoma. J Surg Oncol. 2008;97:246–52.

    Article  PubMed  Google Scholar 

  29. Eguchi S, Takatsuki M, Hidaka M, et al. Predictor for histological microvascular invasion of hepatocellular carcinoma: a lesson from 229 consecutive cases of curative liver resection. World J Surg. 2010;34:1034–8.

    Article  PubMed  Google Scholar 

  30. Esnaola NF, Lauwers GY, Mirza NQ, et al. Predictors of microvascular invasion in patients with hepatocellular carcinoma who are candidates for orthotopic liver transplantation. J Gastrointest Surg. 2002;6:224–32.

    Article  PubMed  Google Scholar 

  31. Imamura H, Matsuyama Y, Tanaka E, et al. Risk factors contributing to early and late phase intrahepatic recurrence of hepatocellular carcinoma after hepatectomy. J Hepatol. 2003;38:200–7.

    Article  PubMed  Google Scholar 

  32. Kim B, Kim Y, Wang H, Kim M. Risk factors for immediate post-operative fatal recurrence after curative resection of hepatocellular carcinoma. World J Gastroenterol. 2006;12:99–104.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sherman M. Alphafetoprotein: an obituary. J Hepatol. 2001;34:603–5.

    Article  PubMed  CAS  Google Scholar 

  34. Ho CC, Cheng CC, Liu YH, et al. Possible relation between histone 3 and cytokeratin 18 in human hepatocellular carcinoma. In Vivo. 2008;22:457–62.

    PubMed  CAS  Google Scholar 

  35. Kawai M, Saegusa Y, Kemmochi S, et al. Cytokeratin 8/18 is a useful immunohistochemical marker for hepatocellular proliferative lesions in mice. J Vet Med Sci. 2010;72:263–9.

    Article  PubMed  CAS  Google Scholar 

  36. Yilmaz Y. Systematic review: caspase-cleaved fragments of cytokeratin 18—the promises and challenges of a biomarker for chronic liver disease. Aliment Pharmacol Ther. 2009;30:1103–9.

    Article  PubMed  CAS  Google Scholar 

  37. Najimi M, Smets F, Sokal E. Hepatocyte apoptosis. Methods Mol Biol. 2009;481:59–74.

    Article  PubMed  CAS  Google Scholar 

  38. Goon PKY, Lip GYH, Stonelake PS, Blann AD. Circulating endothelial cells and circulating progenitor cells in breast cancer: relationship to endothelial damage/dysfunction/apoptosis, clinicopathologic factors, and the Nottingham Prognostic Index. Neoplasia. 2009;11:771–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. González JJ, Bernardo CG, Sanz L, et al. Mismatch repair protein MSH2, cytokeratin 18 and cytokeratin 20 expression: clinicopathological correlation and prognostic value in colorectal cancer patients. Hepato-Gastroenterology. 2007;54(80):2266–71.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hatem Elalfy.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Funding Resources

No funding was received; the authors used the equipment of Mansoura University Hospital.

Ethical Approval

Informed consent was taken from each patient. The research protocol was approved by the Ethical Committee of the Faculty of Medicine, Mansoura University.

Submission Declaration

The manuscript has not been published elsewhere and has not been submitted simultaneously for publication elsewhere.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elalfy, H., Besheer, T., Arafa, M.M. et al. Caspase-Cleaved Cytokeratin 18 Fragment M30 as a Potential Biomarker of Macrovascular Invasion in Hepatocellular Carcinoma. J Gastrointest Canc 49, 260–267 (2018). https://doi.org/10.1007/s12029-017-9937-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12029-017-9937-6

Keywords

Navigation