Skip to main content

Advertisement

Log in

Brainstem Monitoring in the Neurocritical Care Unit: A Rationale for Real-Time, Automated Neurophysiological Monitoring

  • Review Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Patients with severe traumatic brain injury or large intracranial space-occupying lesions (spontaneous cerebral hemorrhage, infarction, or tumor) commonly present to the neurocritical care unit with an altered mental status. Many experience progressive stupor and coma from mass effects and transtentorial brain herniation compromising the ascending arousal (reticular activating) system. Yet, little progress has been made in the practicality of bedside, noninvasive, real-time, automated, neurophysiological brainstem, or cerebral hemispheric monitoring. In this critical review, we discuss the ascending arousal system, brain herniation, and shortcomings of our current management including the neurological exam, intracranial pressure monitoring, and neuroimaging. We present a rationale for the development of nurse-friendly—continuous, automated, and alarmed—evoked potential monitoring, based upon the clinical and experimental literature, advances in the prognostication of cerebral anoxia, and intraoperative neurophysiological monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AAS:

Ascending arousal (reticular activating) system

BAEP:

Brainstem auditory evoked potential

BR:

Blink reflex

CPP:

Cerebral perfusion pressure

CSF:

Cerebrospinal fluid

CT:

Computed tomography

EMG:

Electromyography

EP:

Evoked potential

ICP:

Intracranial pressure

IONM:

Intraoperative neurophysiological monitoring

MAP:

Mean arterial pressure

MBAEP:

Modified forms of the BAEP

MEP:

Motor evoked potentials

NCCU:

Neurocritical care unit

SOL:

Space-occupying lesion

SSEP:

Short latency somatosensory evoked potentials

sTBI:

Severe traumatic brain injury

TcE-MEP:

Transcranial electrical motor evoked potentials

TcM-MEP:

Transcranial magnetic motor evoked potentials

TrSSEP:

Trigeminal short latency somatosensory evoked potential

TTH:

Transtentorial herniation

References

  1. Ropper AH, Gress DR, Diringer MN, Green DM, Mayer SA, Bleck TP. Introduction to critical care in neurology and neurosurgery, management of intracranial hypertension and mass effect, electrophysiologic monitoring in the neurological intensive care unit. In: Ropper AH, Gress DR, Diringer MN, Green DM, Mayer SA, Bleck TP, editors. Neurological and neurosurgical intensive care. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2004. p. 3–11, 26–51, 129–53.

  2. Wijdicks EFM. Agitation and pain, intracranial pressure, monitoring devices, and diagnostic procedures. In: Wijdicks EFM, editor. The clinical practice of critical care neurology. 2nd ed. New York: Oxford University Press. 2003. p. 25–37, 107–81.

  3. LeRoux PD, Levine JM, Kofke WA, editors. Monitoring in neurocritical care. Philadelphia: Elsevier-Saunders; 2013.

    Google Scholar 

  4. Andrews BT. the recognition and management of cerebral herniation syndromes. In: Loftus C, editor. Neurosurgical emergencies. 2nd ed. New York: Thieme; 2008. p. 34–44.

    Google Scholar 

  5. Smith NJ, van Gils M, Prior P. Neurophysiological monitoring during intensive care and surgery. New York: Elsevier; 2006. p. 125–45.

    Google Scholar 

  6. Stevens RD, Shoykhet M, Cadena R. Emergency neurological life support: intracranial hypertension and herniation. Neurocrit Care. 2015;23(Suppl 2):S76–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Plum F, Posner JB, editors. The diagnosis of stupor and coma. 3rd ed. Philadephia: F.A. Davis Co.; 1980.

    Google Scholar 

  8. Posner JB, Saper CB, Schiff ND, Plum F. Plum and Posner’s diagnosis of stupor and coma. 4th ed. New York: Oxford University Press; 2007.

    Google Scholar 

  9. Parvizi J, Damasio AR. Neurochemical correlates of brainstem coma. Brain. 2003;126:1524–36.

    Article  PubMed  Google Scholar 

  10. McNealy DE, Plum F. Brainstem dysfunction with supratentorial mass lesions. Arch Neurol. 1962;7:10–32.

    Article  Google Scholar 

  11. Wijdicks EFM. The comatose patient. 2nd ed. New York: Oxford University Press; 2014. p. 183–4.

    Google Scholar 

  12. Davson H, Segal MB. Physiology of the CSF and blood–brain barriers. Boca Raton: CRC Press; 1996. p. 708–12.

    Google Scholar 

  13. Hakim S, Venegas JG, Burton JD. The physics of the cranial cavity, hydrocephalus and normal pressure hydrocephalus. Surg Neurol. 1976;5:187–210.

    CAS  PubMed  Google Scholar 

  14. Finney LA, Walker AE. Transtentorial herniation. Springfield: Charles C. Thomas; 1962.

    Google Scholar 

  15. Maramattom BV, Wijdicks EFM. Uncal herniation. Arch Neurol. 2005;62:1932–5.

    Article  PubMed  Google Scholar 

  16. Walker AE. Brain herniations. In: Vinken PJ, Bruyn GW, editors. Handbook of clinical neurology. Disturbances of nervous function, vol. 1. Amsterdam: North Holland; 1969. p. 550–73.

    Google Scholar 

  17. Hawthorne C, Piper I. Monitoring of intracranial pressure in patients with traumatic brain injury. Front Neurol (July). 2014; 5 (Article 121):1–16.

  18. Robertson C, Rangel-Castilla L. Critical care management of traumatic brain injury. In: Winn HR, editor. Youmans neurological surgery. Trauma, vol. 4. Philadelphia: Elsevier; 2014. p. 3397–423.

    Google Scholar 

  19. Brodal P. The central nervous system. Structure and function. 2nd ed. New York: Oxford University Press; 1998. p. 421–43.

    Google Scholar 

  20. Haines DE. Neuroanatomy. An atlas of structures, sections, and systems. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2004.

    Google Scholar 

  21. Kretschmann HJ, Weinrich W. Neurofunctional systems. 3D reconstructions with correlated neuroimaging. Stuttgart: Thieme, 1998:42–63, 79–88.

  22. Woolsey TA, Hanaway J, Gado MH. The brain atlas. A visual guide to the human central nervous system. 3rd ed. Hoboken: John; 2008. p. 183, 189, 197, 201.

  23. Wijdicks EFM, Rabinstein AA. Critical care neurology: five new things. Neurol Clin Pract. 2011;1:34–40.

    Article  Google Scholar 

  24. Sherman SM, Guillery RW. Functional connections of cortical areas. A new view from the thalamus. Cambridge: MIT Press; 2013. p. 4–6, 80–2.

  25. Magoun HW. The ascending reticular activating system and wakefulness. In: Delafresnaye JF, editor. Brain mechanisms and consciousness—a symposium. Oxford: Blackwell; 1954. p. 1–20.

    Google Scholar 

  26. Jefferson G. The reticular formation and clinical neurology. In: Jasper HH, Proctor LD, Knighton RS, Noshay WC, Costello RT, editors. Reticular formation of the brain. Henry Ford Hospital international symposium. Boston: Little Brown & Co; 1958. p. 729–44.

    Google Scholar 

  27. Reid WL, Cone WV. The mechanism of fixed dilatation of the pupil resulting from ipsilateral cerebral compression. JAMA. 1939;112:2030–4.

    Article  Google Scholar 

  28. Jennett WB, Stern WE. Tentorial herniation, the midbrain and the pupil. J Neurosurg. 1960;17:598–609.

    Article  CAS  PubMed  Google Scholar 

  29. Kaufmann GE, Clark K. Continuous simultaneous monitoring of intraventricular and cervical subarachnoid cerebrospinal fluid pressure to indicate development of cerebral or tonsillar herniation. J Neurosurg. 1970;33:145–50.

    Article  CAS  PubMed  Google Scholar 

  30. Langfitt TW. Pathophysiology of increased ICP. In: Brock M, Dietz H, editors. Intracranial pressure, experimental and clinical aspects. Berlin: Springer; 1972. p. 361–4.

    Chapter  Google Scholar 

  31. Langfitt TW, Weinstein JD, Kassell NF, Simeone FA. Transmission of increased intracranial pressure. I. Within the craniospinal axis. J Neurosurg. 1964;21:989–97.

    Article  CAS  PubMed  Google Scholar 

  32. Rosenwasser RH, Kleiner LI, Krzeminski JP, et al. Intracranial pressure monitoring in the posterior fossa: a preliminary report. J Neurosurg. 1989;71:503–5.

    Article  CAS  PubMed  Google Scholar 

  33. Stern WE. Studies in experimental brain swelling and compression. J Neurosurg. 1959;16:676–704.

    Article  CAS  PubMed  Google Scholar 

  34. Langfitt TW, Weinstein JD, Kassell NF, Gagliardi LJ. Transmission of increased intracranial pressure. II. Within the supratentorial space. J Neurosurg. 1964;21:998–1005.

    Article  CAS  PubMed  Google Scholar 

  35. Friede RL, Roessmann U. The pathogenesis of secondary midbrain hemorrhages. Neurology. 1966;16:1210–6.

    Article  CAS  PubMed  Google Scholar 

  36. Fisher CM. Brain herniation: a revision of classical concepts. Can J Neurol. 1995;22:83–91.

    Article  CAS  Google Scholar 

  37. Plum F, Posner JB. The diagnosis of stupor and coma. 1st ed. Philadephia: F.A. Davis Co.; 1966.

    Google Scholar 

  38. Plum F, Posner JB. The diagnosis of stupor and coma. 2nd ed. Philadephia: F.A. Davis Co.; 1972.

    Google Scholar 

  39. Wijdicks EFM, Miller GM. MR imaging of progressive downward herniation of the diencephalon. Neurology. 1997;48:1456–9.

    Article  CAS  PubMed  Google Scholar 

  40. Kernohan JW, Woltman HW. Incisura of the crus due to contralateral brain tumor. Arch Neurol Psychiatry. 1929;21:274–87.

    Article  Google Scholar 

  41. Ropper AH. Syndrome of transtentorial herniation: is vertical displacement necessary? J Neurol Neurosurg Psychiatry. 1993;56:932–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Feldmann E, Gandy SE, Becker R, et al. MRI demonstrates descending transtentorial herniation. Neurology. 1988;38:697–701.

    Article  CAS  PubMed  Google Scholar 

  43. Reich JB, Sierra J, Camp W, et al. Magnetic resonance imaging measurements and clinical changes accompanying transtentorial and foramen magnum herniation. Ann Neurol. 1993;33:159–70.

    Article  CAS  PubMed  Google Scholar 

  44. Ropper AH. Lateral displacement of the brain and level of consciousness in patients with an acute hemispheral mass. N Engl J Med. 1986;314:953–8.

    Article  CAS  PubMed  Google Scholar 

  45. Ross DA, Olsen WWI, Ross AM, Andrews BT, Pitts LH. Brain shift, level of consciousness, and restoration of consciousness in patients with acute intracranial hematoma. J Neurosurg. 1989;71:498–502.

    Article  CAS  PubMed  Google Scholar 

  46. Ananda A, Morris GF, Juul N, Marshall SB, Marshall LF. The frequency, antecedent events, and causal relationships of neurologic worsening following severe head injury. Acta Neurochir (Suppl). 1999;73:99–102.

    CAS  Google Scholar 

  47. Narayan RK. Brain stem blood flow, pupillary response, and outcome in patients with severe head injuries. Neurosurgery. 1999;44:948 (comments).

    Article  Google Scholar 

  48. Hussain SI, Cordero-Tumangday C, Goldenberg FD, Wollman R, Frank JI, Rosengart AJ. Brainstem ischemia in acute herniation syndrome. J Neurol Sci. 2008;268:190–2.

    Article  PubMed  Google Scholar 

  49. Ritter AM, Muizelaar JP, Barnes T, et al. Brain stem blood flow, pupillary response, and outcome in patients with severe head injuries. Neurosurgery. 1999;44:941–8.

    Article  CAS  PubMed  Google Scholar 

  50. Ropper AH. A preliminary study of the geometry of brain displacement and level of consciousness with acute intracranial masses. Neurology. 1992;39:622–7.

    Article  Google Scholar 

  51. Ropper AH, Shafran B. Brain edema after stroke: clinical syndrome and intracranial pressure. Arch Neurol. 1984;41:26–9.

    Article  CAS  PubMed  Google Scholar 

  52. Wijdicks EFM. Acute brainstem displacement without uncal herniation and posterior cerebral artery injury. J Neurol Neurosurg Psychiatry. 2008;79:744.

    Article  CAS  PubMed  Google Scholar 

  53. Adler DE, Milhorat TH. The tentorial notch: anatomical variation, morphometric analysis, and classification in 100 human autopsy cases. J Neurosurg. 2002;96:1103–12.

    Article  PubMed  Google Scholar 

  54. Sunderland S. The tentorial notch and complications produced by herniations of the brain through that aperture. Br J Surg. 1958;45:422–38.

    Article  CAS  PubMed  Google Scholar 

  55. Poca MA, Benejam B, Sahuquillo J, et al. Monitoring intracranial pressure in patients with malignant cerebral artery infarction: is it useful? J Neurosurg. 2010;112:648–57.

    Article  PubMed  Google Scholar 

  56. Kim BS, Jallo J. Intracranial pressure monitoring and management of raised intracranial pressure. In: Loftus C, editor. Neurosurgical emergencies. 2nd ed. New York: Thieme; 2008. p. 11–26.

    Google Scholar 

  57. Li LM, Timofeev I, Czosnyka M, Hutchinson PJ. Review article: the surgical approach to the management of increased intracranial pressure after traumatic brain injury. Anesth Analg. 2010;111:736–48.

    Article  PubMed  Google Scholar 

  58. Murray LS, Teasdale GM, Murray GD, Miller DJ, Picard JD, Shaw MD. Head injuries in four British neurosurgical centres. Br J Neurosurg. 1999;13:564–9.

    Article  CAS  PubMed  Google Scholar 

  59. Van der Meer C, van Lindert E, Petru R. Late decompressive craniectomy as rescue treatment for refractory high intracranial pressure in children and adults. Acta Neurochir (Suppl). 2012;114:305–10.

    Article  Google Scholar 

  60. Zweifel C, Hutchinson P, Czosnka M. Intracranial pressure, chapter 4. In: Matta BF, Menon DK, Smith M, editors. Core topics in neuroanaesthesia and neurointensive care. New York: Cambridge University Press; 2011. p. 45–62.

    Chapter  Google Scholar 

  61. Neff S, Subramaniam RP. Monro–Kellie doctrine. J Neurosurg. 1996;85:1195.

    CAS  PubMed  Google Scholar 

  62. Chestnut R, Videtta W, Vespa P, Le Roux P. Intracranial pressure monitoring: fundamental considerations and rationale for monitoring. Neurocrit Care. 2014;21:S64–84.

    Article  Google Scholar 

  63. Beaumont A. Intracranial pressure and cerebral blood flow monitoring. Chapter 8. In: Torbey MT, editor. Neurocritical care. New York: Cambridge University Press; 2009. p. 109–18.

    Chapter  Google Scholar 

  64. Schulman K, Marmarou A, Shapiro K. Brain tissue pressure and focal pressure gradients. In: McLaurin RL, editor. Head injuries. Second Chicago symposium on neural trauma. New York: Grune & Stratton; 1976. p. 279–87.

    Google Scholar 

  65. Sklar FH, Elashvili I. The pressure-volume function of brain elasticity. Physiological considerations and clinical applications. J Neurosurg. 1977;47:670–9.

    Article  CAS  PubMed  Google Scholar 

  66. Wolfa CE, Luerssen TG, Bowman RM, Putty TK. Brain tissue pressure gradients created by expanding frontal epidural mass lesion. J Neurosurg. 1996;84:642–7.

    Article  Google Scholar 

  67. Donnelly BR, Medige J. Shear properties of human brain tissue. J Biomech Eng. 1997;119:423–32.

    Article  CAS  PubMed  Google Scholar 

  68. Sack I, Beierbach B, Hamhaber U, Klatt D, Braun J. Non-invasive measurement of brain viscoelasticity using magnetic resonance elastography. NMR Biomed. 2008;21:265–71.

    Article  PubMed  Google Scholar 

  69. Fehlner A, Papaoglou S, McGarry MD, et al. Cerebral multifrequency MR elastography by remote excitation of intracranial shear waves. NMR Biomed. 2015;28:1426–32.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Reulen HJ, Graham R, Spatz M, Klatzo I. Role of pressure gradients and bulk flow in dynamics of vasogenic brain edema. J Neurosurg. 1977;46:24–35.

    Article  CAS  PubMed  Google Scholar 

  71. Rekate HL. Brain turgor (Kb): intrinsic property of the brain to resist distortion. Pediatr Neurosurg. 1992;18:257–62.

    Article  CAS  PubMed  Google Scholar 

  72. Miller JD, Leech PJ, Pickard JD. Volume–pressure response in various experimental and clinical conditions. In: Lundberg N, Ponten U, Brock M, editors. Intracranial pressure II. New York: Springer; 1975. p. 97–100.

    Chapter  Google Scholar 

  73. Nakatani S, Ommaya AK. A critical rate of cerebral compression. In: Brock M, Dietz H, editors. Intracranial pressure, experimental and clinical aspects. Berlin: Springer; 1972. p. 144–8.

    Chapter  Google Scholar 

  74. Symon L, Pasztor E, Branston NM, Dorsch WC. Effect of supratentorial space-occupying lesions on regional intracranial pressure and local cerebral blood flow: an experimental study in baboons. J Neurol Neurosurg Psychiatry. 1974;37:617–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Weaver DD, Winn HR, Jane JA. Differential intracranial pressure in patients with unilateral mass lesions. J Neurosurg. 1982;56:660–5.

    Article  CAS  PubMed  Google Scholar 

  76. Bekar A, Taskapilioglu O, Yilmazlar S, Ender K, Aksoy K. Is supratentrial pressure difference clinically relevant? Analysis of 55 consecutive cases by bilateral intracranial pressure monitoring. Neurol Res. 2008;30:465–70.

    Article  PubMed  Google Scholar 

  77. Marshall LF, Zovickian J, Ostrup R, Seelig J. Multiple simultaneous recordings of ICP in patients with acute mass lesions. In: Miller JD, Teasdale GM, Rowan JO, Galbraith SL, Mendelow AD, editors. Intracranial pressure VI. New York: Springer; 1986. p. 184–6.

    Chapter  Google Scholar 

  78. Mindermann T, Reinhardt H, Gratzl O. Significant lateralization of supratentorial ICP after blunt head trauma. Acta Neurochir. 1992;116:60–1.

    Article  CAS  PubMed  Google Scholar 

  79. Mindermann T, Gratzl O. Interhemispheric pressure gradients in severe head trauma in humans. Acta Neurochir Suppl. 1998;71:56–8.

    CAS  PubMed  Google Scholar 

  80. Sahuquillo J, Poca MA, Arribas M, et al. Interhemispheric supratentorial intracranial pressure gradients in head-injured patients: are they clinically important. J Neurosurg. 1999;90:16–26.

    Article  CAS  PubMed  Google Scholar 

  81. Chambers IR, Kane PJ, Signorini DF, Jenkins A, Mendalow AD. Bilateral ICP monitoring: it’s importance in detecting the severity of secondary insults. Acta Neurochir Suppl. 1988;71:42–3.

    Google Scholar 

  82. Zacchetti L, Magnoni S, DiCorte F, Zanier ER, Stocchetti N. Accuracy of intracranial pressure monitoring: systematic review and meta-analysis. Crit Care. 2015;19:420.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Marmarou A, Schulman K, LaMorgese J. Compartmental analysis of compliance and outflow resistance of the cerebrospinal fluid system. J Neurosurg. 1975;43:523–34.

    Article  CAS  PubMed  Google Scholar 

  84. Helbok R, Olson DM, Le Roux PD, Vespa P. Intracranial pressure and cerebral perfusion pressure monitoring in non-TBI patients: special consideratons. Neurocrit Care. 2014;21:S85–94.

    Article  PubMed  Google Scholar 

  85. Olson DM, Batjer HH, Abdulkadir K, Hall CE. Measuring and monitoring ICP in Neurocritical care: results from a National Practice Survey. Neurocrit Care. 2014;20:15–20.

    Article  PubMed  Google Scholar 

  86. Le Roux P, Menon DK, Citerio G, et al. The international multidisciplinary consensus conference on multimodality monitoring in neurocritical care: evidentiary tables: a statement for healthcare professionals from the Neurocritical Care Society and the European Society of Intensive Care Medicine. Neurocrit Care. 2014;21 Suppl 2:S297–361.

  87. Lane PL, Skoretz TG, Doig G, Girotti MJ. Intracranial pressure monitoring and outcomes after traumatic brain injury. Can J Surg. 2000;43:442–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Qiang Y, Xing W, Yirui S, Jian Y, Zhiqi L, Zhuoying D, Ying M, et al. Impact of intracranial pressure monitoring on mortality in patients with traumatic brain injury: a systematic review and meta-analysis. J Neurosurg. 2015;122:574–87.

    Article  Google Scholar 

  89. Chestnut RM, Temkin N, Carney N, Dikmen S, Rondina C, Videtta W, et al. A trial of intracranial pressure monitoring in traumatic brain injury. N Engl J Med. 2012;367:2471–81.

    Article  CAS  Google Scholar 

  90. Cremer OL, van Dijk GW, van Wensen E, et al. Effect of intracranial pressure monitoring and targeted intensive care on functional outcome after severe head injury. Crit Care Med. 2005;33:2207–13.

    Article  PubMed  Google Scholar 

  91. Shafti S, Diaz-Arrastia R, Madden C, Gentilello L. Intracranial pressure monitoring in brain-injured patients is associated with worsening of survival. J Trauma. 2008;64:335–40.

    Article  Google Scholar 

  92. Compagnone C, Murray GD, Teasdale GM, et al. The management of patients with intradural post-traumatic mass lesions: a multicenter survey of current approaches to surgical management in 729 patients coordinated by the European Brain Injury Consortium. Neurosurgery. 2005;57:1183–92.

    Article  PubMed  Google Scholar 

  93. Leech P, Childs C, Evans J, Johnson N, Protheroe R, King A. Transfer times for patients with extradural and subdural haematomas to neurosurgery in Greater Manchester. Br J Neurosurg. 2007;21:11–5.

    Article  Google Scholar 

  94. Levi L, Guilburd J, Soustiel J, Sviri G, Constantinescu M, Zaaroor M. Why mortality is still high with modern care of 613 evacuated mass lesions presented as severe head injuries 1999–2009. Acta Neurochir Suppl. 2012;114:301–4.

    Article  PubMed  Google Scholar 

  95. Al-Tamimi YZ, Helmy A, Bavetta S, Price SJ. Assessment of zero drift in the Codman intracranial pressure monitor: a study from 2 neurointensive care units. Neurosurgery. 2009;64:94–9.

    Article  PubMed  Google Scholar 

  96. Gelabert-Gonzalez M, Ginesta-Galan V, Sernamito-Garcia R, Allut AG, Bandin-Dieguez J, Rumbo RM. The Camino intracranial pressure device in clinical practice. Assessment in a 1000 cases. Acta Neurochir. 2006;148:435–41.

    Article  CAS  PubMed  Google Scholar 

  97. Koenig MA, Kaplan PW. Invited review: clinical applications for EPs in the ICU. J Clin Neurophysiol. 2015;32:472–80.

    Article  PubMed  Google Scholar 

  98. Chiappa KH. Brain Stem Auditory Evoked Potentials: Methodology & Interpretation, In: Chiappa KH editor. Evoked potentials in clinical medicine. 3rd ed. Philadelphia: Raven Press; 1997 a:157–282.

  99. Chiappa KH. Short-latency somatosensory evoked potentials: methodology. In: Chiappa KH, editor. Evoked potentials in clinical medicine. 3rd ed. Philadephia: Raven Press; 1997. p. 283–339.

    Google Scholar 

  100. De Sousa LCA, Colli BO, Piza MRT, da Csota SS, Ferez M, Lavrador MAS. Auditory brainstem response: prognostic value in patients with a score of 3 on the Glasgow Coma Scale. Otol Neurotol. 2007;28:426–8.

    PubMed  Google Scholar 

  101. Stone JL, Ghaly RF, Hughes JR. Evoked potentials in head injury and states of increased intracranial pressure. J Clin Neurophysiol. 1988;5:135–60.

    Article  CAS  PubMed  Google Scholar 

  102. Lutschg J, Pfenninger J, Ludin HP, Vassella F. Brain-stem auditory evoked potentials and early somatosensory evoked potentials in neurointensively treated comatose children. Am J Dis Child. 1983;1983(137):421–6.

    Google Scholar 

  103. Newlon PG, Greenberg RP. Evoked potentials in severe head injury. J Trauma. 1984;24:61–6.

    Article  CAS  PubMed  Google Scholar 

  104. Narayan RK, Greenberg RP, Miller JD, et al. Improved confidence of outcome prediction in severe head injury: a comparative analysis of the clinical examination, multimodal evoked potentials, CT scanning, and intracranial pressure. J Neurosurg. 1981;54:751–62.

    Article  CAS  PubMed  Google Scholar 

  105. Tsubokawa T, Nishimoto H, Yamamoto T, Kitamura M, Katayama Y, Moriyasu N. Assessment of brainstem damage by the auditory brainstem response in acute severe head injury. J Neurol Neurosurg Psychiatry. 1980;43:1005–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Seelig JM, Greenberg RP, Becker DP, Miller JD, Choi SC. Reversible brain-stem dysfunction following acute traumatic subdural hematoma: a clinical and electrophysiological study. J Neurosurg. 1981;55:516–23.

    Article  CAS  PubMed  Google Scholar 

  107. Stone JL, Ghaly RF, Hughes JR, Nagao S. Sensory evoked potentials in head injury. In: Stone JL, editor. Head injury and its complications. Costa Mesa: PMA Publishing; 1993. p. 95–131.

    Google Scholar 

  108. Su TY, Xiao SY, Haupt WF, et al. Parameters and grading of evoked potentials: prediction of unfavorable outcome in patients with severe stroke. J Clin Neurophysiol. 2010;27:25–9.

    Article  PubMed  Google Scholar 

  109. Amantini A, Fossi S, Grippo A, et al. Continuous EEG-SEP monitoring in severe brain injury. Clin Neurophysiol. 2009;39:85–93.

    Article  CAS  Google Scholar 

  110. Carrerea E, Emerson RG, Claassen J. Evoked Potentials. In: Le Roux PD, Levine JM, Kofke WA, editors. Monitoring in neurocritical care. Philadelphia: Elsevier; 2013. p. 236–45.

    Google Scholar 

  111. Fossi S, Amantini A, Grippo A, et al. Continuous EEG-SEP monitoring of severely brain injured patients in NICU: methods and feasibility. Neurophysiol Clin. 2006;36:195–205.

    Article  CAS  PubMed  Google Scholar 

  112. Haupt WF, Pawlik G, Thiel A. Initial and serial evoked potentials in cerebrovascular critical care patients. J Clin Neurophysiol. 2006;23:389–94.

    Article  PubMed  Google Scholar 

  113. Carter BG, Butt W. Are somatosensory evoked potentials the best predictor of outcome after severe brain injury? A systematic review. Intensive Care Med. 2005;31:765–75.

    Article  CAS  PubMed  Google Scholar 

  114. Cruccu G, Aminoff MJ, Curio G, et al. Recommendations for the clinical use of somatosensory-evoked postentials. Clin Neurophysiol. 2008;119:1705–19.

    Article  CAS  PubMed  Google Scholar 

  115. Guerit JM, Amantini A, Amodio P, et al. Consensus on the use of neurophysiological tests in the intensive care unit (ICU): electroencephalogram (EEG), evoked potentials (EP), and electroneuromyography (ENMG). Clin Neurophysiol. 2009;39:71–83.

    Article  Google Scholar 

  116. Guerit JM. Medical technology assessment EEG and evoked potentials in the intensive care unit. Neurophysiol Clin. 1999;29:301–17.

    Article  CAS  PubMed  Google Scholar 

  117. Guerit JM. Evoked potentials in severe brain injury. In: Laureys S, editor. Progress in brain research, vol. 150, Elsevier BV. 2005; Chapter 29:415–426.

  118. Stocchetti N, Le Roux P, Vespa P, et al. Clinical review: neuromonitoring—an update. Crit Care. 2013;17:201–13.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Esteban A. A neurophysiological approach to brainstem reflexes. Blink reflex. Neurophysiol Clin. 1999;29:7–38.

    Article  CAS  PubMed  Google Scholar 

  120. Valls-Sole J. The blink reflex and other cranial nerve reflexes. In: Aminoff MJ, editor. Aminoff’s electrodiagnosis in clinical neurology. 6th ed. New York: Elsevier-Saunders; 2012. p. 421–35.

    Chapter  Google Scholar 

  121. Preston DC, Shapiro BE. Blink reflex. Electromyography and neuromuscular disorders. Clinical-electrophysiologic correlations. 2nd ed. Philadelphia: Elsevier; 2005. p. 59–64.

    Google Scholar 

  122. Lyon LW, Kimura J, McCormick WF. Orbicularis oculi reflexes in coma: clinical, electrophysiological and pathological correlation. J Neurol Neurosurg Psychiatry. 1972;35:582–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Fisher MA, Shahani BT, Young RR. Assessing segmental excitability after acute rostral lesions: II. The blink reflex. Neurology. 1979;29:45–50.

    Article  CAS  PubMed  Google Scholar 

  124. Klug M, Csecsei G, Rap ZM. Evoked potentials and blink reflex in acute midbrain syndromes. Clinical and experimental findings. In: Villani R, Papo I, Giovanelli M, Gaini SM, Tomei G, editors. Advances in neurotraumatology. Excerpta medica. Amsterdam: Oxford-Princeton; 1983. p. 207–9.

    Google Scholar 

  125. Mabin D, Mimassi N, L’Azou D, Besson G, Tea S, Le Mevel JC. Prognostic value of the blink reflex in 49 severe trauma comas. In: Villani R, Papo I, Giovanelli M, Gaini SM, Tomei G, editors. Advances in neurotraumatology. Excerpta medica. Amsterdam: Oxford-Princeton; 1983. p. 217–9.

    Google Scholar 

  126. Csecsei G, Klug N, Rap ZM. Effect of increased intracranial pressure on the blink reflex in cats. Acta Neurochir. 1983;68:85–92.

    Article  CAS  PubMed  Google Scholar 

  127. Ayta S, Sohaoglu M, Uluduz D, et al. Auditory evoked blink reflex in peripheral facial paresis. J Clin Neurophysiol. 2015;32:34–8.

    Article  PubMed  Google Scholar 

  128. Lederman RJ. Cranial nerve conduction studies. The blink reflex and jaw jerk. In: Levin KH, Luders HO, editors. Comprehensive clinical neurophysiology. Philadelphia: W. B. Saunders; 2000. p. 107–11.

    Google Scholar 

  129. Semih A, Sohtaoglu M, Uluduz D, et al. Auditory evoked blink reflex in peripheral facial paresis. J Clin Neurphysiol. 2015;32:34–8.

    Article  Google Scholar 

  130. Deletis V, Urriza J, Ulkatan S, Fernandez-Conejero I, Lesser J, Misita D. The feasibility of recording blink reflexes under general anesthesia. Muscle Nerve. 2009;39:642–6.

    Article  PubMed  Google Scholar 

  131. Husain AM. Neurophysiologic intraoperative monitoring. In: Ebersole JS, editor. Current practice of clinical electroencephalography. 4th ed. Philadelphia: Wolters Kluwer; 2014. p. 488–542.

    Google Scholar 

  132. Nuwer MR, Packwood JW. Somatosensory evoked potential monitoring with scalp and cervical recording. In: Nuwer MR, editor. Handbook of clinical neurophysiology. Intraoperative monitoring of neural function, vol. 8. Amsterdam: Elsevier; 2008. p. 180–9.

    Chapter  Google Scholar 

  133. American Clinical Neurophysiology Society. Guidelines: guidelines on short-latency auditory and short-latency somatosensory evoked potentials. J Clin Neurophysiol. 2006;23(2):157–79.

    Article  Google Scholar 

  134. Aminoff MJ, Eisen A. Sensory evoked potentials. In: Aminoff MJ, editor. Aminoff’s electrodiagnosis in clinical neurology. 6th ed. New York: Elsevier-Saunders; 2012. p. 581–601.

    Chapter  Google Scholar 

  135. Husain AM. Evoked potentials overview. In: Ebersole JS, editor. Current practice of clinical electroencephalography. 4th ed. Philadelphia: Wolters Kluwer; 2014. p. 442–87.

    Google Scholar 

  136. Emerson RG, Adams DC. Intraoperative monitoring by evoked potential techniques. In: Aminoff MJ, editor. Aminoff’s electrodiagnosis in clinical neurology. 6th ed. New York: Elsevier-Saunders; 2012. p. 651–70.

    Chapter  Google Scholar 

  137. Nuwer MR. Somatosensory evoked potential monitoring with scalp and cervical recording. Intraoperative neurophysiologic monitoring. In: Galloway GM, Nuwer MR, Lopez JR, Zamel KM, editors. New York: Cambridge University Press; 2010. p. 63–74.

  138. Chiappa KH, Hill RA. Short-latency somatosensory evoked potentials: interpretation. In: Chiappa KH, editor. Evoked potentials in clinical medicine. 3rd ed. Philadelphia: Raven Press; 1997. p. 341–423.

    Google Scholar 

  139. Moller AR. Monitoring brainstem auditory and somatosensory evoked potentials. In: Intraoperative neurophysiological monitoring. 2nd ed. Totowa: Humana; 2006. p. 85–144.

  140. Toleikis JR. Intraoperative monitoring using somatosensory evoked potentials: a position statement by the American Society of Neurophysiological Monitoring. J Clin Monit Comput. 2005;19:241–58.

    Article  PubMed  Google Scholar 

  141. Fischer C, Luaute J. Evoked potentials for the prediction of vegetative state in the acute stage of coma. Neuropsychol Rehab. 2005;15:372–80.

    Article  Google Scholar 

  142. Luaute J, Cotton F, Jemaire JJ, et al. Let live or let die after traumatic coma. Scrutinizing somatosensory evoked potentials. Neurology: clinical practice, American Academy of Neurology Enterprises, Baltimore: Wolters Kluwer; 2012. p. 24–32.

  143. Robinson LR, Micklesen PJ, Tirschwell DL, Lew HL. Predictive value of somatosensory evoked potentials for awakening from coma. Crit Care Med. 2003;31:960–7.

    Article  PubMed  Google Scholar 

  144. Cruse D, Norton L, Gofton T, Young GB, Owen AM. Positive prognostication from median-nerve somatosensory evoked potentials. Neurocrit Care. 2014;21:238–44.

    Article  PubMed  Google Scholar 

  145. Landi A, Zanusso M, Curri D, et al. Trigeminal evoked potentials in patients undergoing percutaneous micro-compression of the Gasserian Ganglion. Stereotact Funct Neurosur. 1991;56:28–36.

    Article  CAS  Google Scholar 

  146. Soustiel JF, Hafner H, Guilburd JN, Zaaroor M, Levi L, Feinsod M. A physiological coma scale: grading of coma by combined use of brain-stem trigeminal and auditory evoked potentials and the Glasgow Coma Scale. Electroencephalogr Clin Neurophysiol. 1993;87:277–83.

    Article  CAS  PubMed  Google Scholar 

  147. Kawaguchi J, Matsuura N, Kasahara M, Ichinohe T. Cervical sympathetic block prolongs the latency and reduces the amplitude of trigeminal somatosensory evoked potentials. J Clin Neurophysiol. 2015;32:39–43.

    Article  PubMed  Google Scholar 

  148. Malcharek MJ, Landgraf J, Hennig G, et al. Recordings of long-latency trigeminal somatosensory-evoked responses under general anesthesia. Clin Neurophysiol. 2011;122:1048–54.

    Article  PubMed  Google Scholar 

  149. Hasegawa A. The changes of the trigeminal somatosensory evoked potentials (TSEPs) after block anesthesia to the mandibular foramen. Aichi Gakuin Dent Soc. 2005;43:47–53.

    Google Scholar 

  150. Bennett AJ, Wastell DG, Barker GR, et al. Trigeminal somatosensory evoked potentials. A review of the literature as applicable to oral dysesthesias. Int J Oral Maxillofac Surg. 1987;16:408–15.

    Article  CAS  PubMed  Google Scholar 

  151. Burkard RF, Don M, Eggermont JJ. Auditory evoked potentials. Basic principals and clinical application. Philadelphia: Lippincott Williams & Wilkins; 2007.

    Google Scholar 

  152. Hall JW. New handbook of auditory evoked responses. Boston: Allyn and Bacon; 2007. p. 212–80,434–40.

  153. Legatt AD. Brainstem auditory evoked potentials: methodology, interpretation, and clinical application. In: Aminoff MJ, editor. Aminoff’s electrodiagnosis in clinical neurology. 6th ed. New York: Elsevier-Saunders; 2012. p. 519–52.

    Chapter  Google Scholar 

  154. Legatt AD. Mechanisms of intraoperative brainstem auditory evoked potential changes. J Clin Neurophysiol. 2002;19:396–408.

    Article  PubMed  Google Scholar 

  155. Stone JL, Calderon-Arnulphi M, Watson KS, Patel K, Mander NS, Suss N, Fino J, Hughes JR. Brainstem auditory evoked potentials—a review and modified studies in healthy subjects. J Clin Neurophysiol. 2009;26:167–75.

    Article  PubMed  Google Scholar 

  156. Simon M. Neurophysiologic tests in the operating room. In: Simon M, editor. Intraoperative neurophysiology. New York: Demos Medical; 2010. p. 2–44.

    Google Scholar 

  157. Sininger YS. The use of auditory brainstem response in screening for hearing loss and audiometric threshold prediction. In: Burkard R, Don M, Eggermont JJ, editors. Auditory evoked potentials. Basic principles and clinical application. Philadelphia: Lippincott Williams & Wilkins; 2007. p. 254–74.

    Google Scholar 

  158. Krieger D, Adams HP, Schwarz S, Rieke K, Aschoff A, Hacke W. Prognostic and clinical relevance of pupillary responses, intracranial pressure monitoring, and brainstem auditory evoked potentials in comatose patients with acute supratentorial lesions. Crit Care Med. 1993;21:1944–50.

    Article  CAS  PubMed  Google Scholar 

  159. Krieger D, Jauss M, Schwarz S, Hacke W. Serial somatosensory and brainstem auditory evoked potentials in monitoring of acute supratentorial mass lesions. Crit Care Med. 1995;23:1123–31.

    Article  CAS  PubMed  Google Scholar 

  160. Nagao S, Sunami N, Tsutsui T, et al. A diagnosis of uncal herniation by auditory brainstem response. Neurol Med Chir (Tokyo). 1984;24:396–400.

    Article  CAS  Google Scholar 

  161. Nagao S, Kuyama H, Honma Y, et al. Prediction and evaluation of brainstem function by auditory brainstem responses in patients with uncal herniation. Surg Neurol. 1987;27:81–6.

    Article  CAS  PubMed  Google Scholar 

  162. Wang WP, Qui MD, Ren HJ, Zhang XH. Relations of intracranial pressure, creatine kinase and brainstem auditory evoked potential in patients with traumatic brain edema. Chin Med J (Eng). 1994;107:205–8.

    CAS  Google Scholar 

  163. Bosch-Blancafort B, Olesti-Marco M, Poch-Puig JM, Rubio-Garcia E, Nogues-Bara P, Iglesias-Berenguer J. Predictive value of brain-stem auditory evoked potentials in children with post-traumatic coma produced by diffuse brain injury. Childs Nerv Sys. 1995;11:400–5.

    Article  CAS  Google Scholar 

  164. Kawahara N, Sasaki M, Mii K, Takakura K. Reversibility of cerebral function assessed by somatosensory evoked potentials and its relation to intracranial pressure—report of six cases with severe head injury. Neurol Med Chir (Tokyo). 1991;31:264–71.

    Article  CAS  Google Scholar 

  165. Nagata K, Tazawa T, Mizukami M, Araki G. Application of brainstem auditory evoked potentials to evaluation of cerebral herniation. In: Nodar RH, Barber C, editors. Evoked potentials, vol. 2. Boston: Butterworths; 1984. p. 183–93.

    Google Scholar 

  166. Nagao S, Sunami N, Tsutsui T, Honma Y, Doi A, Nishimoto A. Serial observations of brain stem responses in central transtentorial herniation. Surg Neurol. 1982;17:355–7.

    Article  CAS  PubMed  Google Scholar 

  167. Rogowski M, Michalska BI. The importance of brain stem evoked potentials in the diagnosis of neurosurgical patients. Neurol Neurochir Pol. 2001;35:667–79.

    CAS  PubMed  Google Scholar 

  168. Wang WP, Qiu MD, Ren HJ, Zhang XH. Relations of intracranial pressure, creatine kinase and brainstem auditory evoked potential in patients with traumatic brain edema. Chin Med J (Engl). 1994;107:205–8.

    CAS  PubMed  Google Scholar 

  169. Ackley RS, Herzberger-Kimball L, Burns S, Balew SD. Auditory brainstem response testing: Stimulus rate revisited. 2006. http://www.AudiologyOnline.com. Accessed 12 Dec 2015, p. 1–7.

  170. Stone JL, Ghaly RF, Subramanian KS, Roccaforte P, Hughes JR. Modified auditory brain-stem responses (MABR): part I: rationale and normative study. Clin Electroencephalogr. 1987;18:218–26.

    CAS  PubMed  Google Scholar 

  171. Stone JL, Fino J, Vannemreddy P, Charbel F. Modified brainstem auditory evoked responses in patients with non-brainstem compressive cerebral lesions. Acta Neurochir Suppl. 2012;114:81–5.

    Article  PubMed  Google Scholar 

  172. Stone JL, Fino J, Patel K, Calderon-Arnulphi M, Suss N, Hughes JR. Modified brain stem auditory evoked potentials in patients with intracranial mass lesions. Clin EEG Neurosci. 2012;43:291–302.

    Article  PubMed  Google Scholar 

  173. Legatt AD, Emerson RG, Epstein CM, et al. ACNS Guideline: transcranial electrical stimulation motor evoked potential monitoring. J Clin Neurophysiol. 2016;33:42–50.

    Article  PubMed  Google Scholar 

  174. Journee HL, Motor EP. Physiology, risks and specific anesthetic effects. In: Nuwer MR, editor. Handbook of clinical neurophysiology. Intraoperative monitoring of neural function, vol. 8. Amsterdam: Elsevier B.V; 2008. p. 218–34.

    Chapter  Google Scholar 

  175. Tanaguchi M, Cedzich C, Schramm J. Modification of electrical stimulation technique for motor evoked potential monitoring under general anesthesia: technical description. Neurosurgery. 1993;32:219–26.

    Article  Google Scholar 

  176. Galloway GM, Dias BR, Brown JL, Henry CM, Brooks DA, Buggie EW. Transcranial magnetic stimulation—may be useful as a preoperative screen of motor tract function. J Clin Neurophysiol. 2013;30:386–9.

    Article  PubMed  Google Scholar 

  177. Zamel KM. Magnetic stimulation. In: Galloway GM, Nuwer MR, Lopez JR, Zamel KM, editors. Intraoperative neurophysiological monitoring. New York: Cambridge University Press; 2010. p. 19–32.

    Chapter  Google Scholar 

  178. Egg-Olofsson KE. Tanscranial magnetic stimulation. In: Holmes GL, Moshe SL, Jones Jr HR, editors. Clinical neurophysiology of infancy, childhood, and adolescence. Philadelphia: Elsevier; 2006. p. 819–25.

    Chapter  Google Scholar 

  179. Gugino LD, Aglio LS, Edmonds HL, Gonzalez AA. Magnetic cortical stimulation techniques. In: Nuwer MR, editor. Handbook of clinical neurophysiology. Intraoperative monitoring of neural function, vol. 8. Amsterdam: Elsevier B.V; 2008. p. 282–318.

    Chapter  Google Scholar 

  180. Malcolm MP, Paxton RJ. High-frequency repetitive transcranial magnetic stimulation effects on motor intracortical neurophysiology: a sham-controlled investigation. J Clin Neurophysiol. 2015;32:428–33.

    Article  PubMed  Google Scholar 

  181. Binder DK, Lyon R, Manley GT. Transcranial motor evoked potential recording in a case of Kernohan’s notch syndrome: case report. J Neurosurg. 2004;54:999–1003.

    Article  Google Scholar 

  182. Carrasco R, Pascual JM, Navas M, Martinez-Florez P, Manzanares-Soler R, Sola RG. Kernohan–Woltman notch phenomenon caused by an acute subdural hematoma. J Clin Neurosci. 2009;16:1628–31.

    Article  PubMed  Google Scholar 

  183. Kwon HG, Lee DG, Choi BY, Chang CH, Kim SH, Jang SH. Recovery of the corticospinal tract after injury by transtentorial herniation—a case report. NeurRehab. 2011;29:243–6.

    Google Scholar 

  184. Milhorat TM, Marion DW. Comments on electrophysiology of Kernohan’s notch. Neurosurgery. 2004;54:1002–3.

    Google Scholar 

  185. Moon KS, Lee JK, Joo SP, et al. Kernohan’s notch phenomenon in chronic subdural hematoma: MRI findings. J Clin Neurosci. 2007;14:989–92.

    Article  PubMed  Google Scholar 

  186. Namura S, Kang Y, Matsuda I, Kamijyo Y. Magnetic resonance imaging of sequelae of temporal lobe herniation secondary to traumatic acute subdural hematoma: Kernohan’s notch and posterior cerebral artery territory infarctions contralateral to the supratentorial lesion—case report. Neurol Med Chir (Tokyo). 1997;37:32–5.

    Article  CAS  Google Scholar 

  187. Uesugi S, Suchiro E, Nakayama H, Suzuki M. Diffusion-weighted magnetic resonance imaging in a case of Kernohan’s notch phenomenon. Acta Neurochir. 2010;152:1809–10.

    Article  PubMed  Google Scholar 

  188. Yeo SS, Jang SH. Corticospinal tract recovery in a patient with traumatic transtentorial herniation. Neural Reg Res. 2013;8:469–73.

    Google Scholar 

  189. Yoo WK, Kim DS, Kwon YH, Jang SH. Kernohan’s notch phenomena demonstrated by diffusion tensor imaging and transcranial magnetic stimulation. J Neurol Neurosurg Psychiatry. 2008;79:1295–7.

    Article  PubMed  Google Scholar 

  190. Suzuki A, Nishimura S, Yasui N. Electrophysiological assessment of patients of supratentorial intracerebral hematoma, In: Brain Hemorrhage’95. Proceeding of the 1st annual meeting of intracerebral hemorrhage, Nagoya, Japan; 1995. p. 43–9.

  191. Nagao S, Roccaforte P, Moody RA. Acute intracranial hypertension and auditory brain-stem responses. Part 1: changes in the auditory brain-stem and somatosensory evoked responses in intracranial hypertension in cats. J Neurosurg. 1979;51:669–76.

    Article  CAS  PubMed  Google Scholar 

  192. Nagao S, Roccaforte P, Moody RA. Acute intracranial hypertension and auditory brain-stem responses. Part 2: the effects of brain-stem movement on the auditory brain-stem responses due to transtentorial herniation. J Neurosurg. 1979;51:846–51.

    Article  CAS  PubMed  Google Scholar 

  193. Nagao S, Sunami N, Tsutsui T, et al. Acute intracranial hypertension and brain-stem blood flow. J Neurosurg. 1984;60:566–71.

    Article  CAS  PubMed  Google Scholar 

  194. Nagao S, Roccaforte P, Moody RA. Effect of brain compression on pyramidal tract responses in the cat. Exp Neurol. 1981;73:107–17.

    Article  CAS  PubMed  Google Scholar 

  195. Stone JL, Ghaly RF, Subramanian KS, Roccaforte P, Kane J. Transtentorial brain herniation in the monkey: analysis of brainstem auditory and somatosensory evoked potentials. Neurosurgery. 1990;26:26–31.

    Article  CAS  PubMed  Google Scholar 

  196. Seelig JM, Becker DP, Miller JD, et al. Traumatic acute subdural hematoma: major mortality reduction in comatose patients treated within four hours. N Eng J Med. 1981;304:1511–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is dedicated to Dr. Robert A. Moody, a modern pioneer in the aggressive approach to cerebral decompression and ICP monitoring. In 1975, Dr. Moody established an experimental brain herniation laboratory at Chicago’s Cook County Hospital Hektoen Laboratory with the foresight to utilize the recently developed evoked potential responses. There, the senior author was stimulated to conduct experimental work. Special thanks to Dr. Jerome B. Posner of New York City, noted authority on ‘Stupor and Coma’ who graciously reviewed a draft of the manuscript, which he found of much interest, and met with the senior author to review the figures. We remain particularly grateful to Dr. John R. Hughes, our longtime mentor in clinical neurophysiology at the University of Illinois in Chicago (UIC). Dr. Gleb Gorelick, neuroradiologist at Advocate Illinois Masonic Hospital in Chicago assisted in interpretation of the MRI images, and Dr. Ankit Mehta, from the UIC Department of Neurosurgery, reviewed the manuscript and provided input. Finally, we thank our active clinical neurophysiology and intraoperative monitoring teams at both the UIC and Evanston/North Shore University Hospital for their continued enthusiasm and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James L. Stone.

Ethics declarations

Conflict of interest

James L. Stone: Natus/Biologic provided evoked potential instrumentation and some technical support of work presented in this review. Patent issued to inventor JLS on 01/12/2014 and assigned and owned by the University of Illinois. Title: NonInvasive, Bedside Intra-Cranial Pressure And Brain Shift/Herniation Monitoring Unit Utilizing Early OnSet Auditory Evoked Responses. A University of Illinois start-up cooperation (Remote Vital Monitoring) has been formed and is in the early stages of development. Outside funding has not been obtained. JLS has 53 % stock ownership in this corporation. John Fino: A University of Illinois start-up corporation (Remote Vital Monitoring) has been formed and is in the early stages of development. Outside funding has not been secured. JF is a minor shareholder (5 % stock) in this corporation. Julian E. Bailes, Ahmed N. Hassan, Brian Sindelar, and Vimal Patel declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stone, J.L., Bailes, J.E., Hassan, A.N. et al. Brainstem Monitoring in the Neurocritical Care Unit: A Rationale for Real-Time, Automated Neurophysiological Monitoring. Neurocrit Care 26, 143–156 (2017). https://doi.org/10.1007/s12028-016-0298-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-016-0298-y

Keywords

Navigation