Skip to main content

Advertisement

Log in

The Role of Platelet Activation and Inflammation in Early Brain Injury Following Subarachnoid Hemorrhage

  • Original Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

Early brain injury (EBI) following aneurysmal subarachnoid hemorrhage (SAH) is an important predictor of poor functional outcome, yet the underlying mechanism is not well understood. Animal studies suggest that platelet activation and inflammation with subsequent microthrombosis and ischemia may be a mechanism of EBI.

Methods

A prospective, hypothesis-driven study of spontaneous, SAH patients and controls was conducted. Platelet activation [thromboelastography maximum amplitude (MA)] and inflammation [C-reactive protein (CRP)] were measured serially over time during the first 72 h following SAH onset. Platelet activation and inflammatory markers were compared between controls and SAH patients with mild [Hunt–Hess (HH) 1–3] versus severe (HH 4–5) EBI. The association of these biomarkers with 3-month functional outcomes was evaluated.

Results

We enrolled 127 patients (106 SAH; 21 controls). Platelet activation and CRP increased incrementally with worse EBI/HH grade, and both increased over 72 h (all P < 0.01). Both were higher in severe versus mild EBI (MA 68.9 vs. 64.8 mm, P = 0.001; CRP 12.5 vs. 1.5 mg/L, P = 0.003) and compared to controls (both P < 0.003). Patients with delayed cerebral ischemia (DCI) had more platelet activation (66.6 vs. 64.9 in those without DCI, P = 0.02) within 72 h of ictus. At 3 months, death or severe disability was more likely with higher levels of platelet activation (mRS4–6 OR 1.18, 95 % CI 1.05–1.32, P = 0.007) and CRP (mRS4–6 OR 1.02, 95 % CI 1.00–1.03, P = 0.041).

Conclusions

Platelet activation and inflammation occur acutely after SAH and are associated with worse EBI, DCI and poor 3-month functional outcomes. These markers may provide insight into the mechanism of EBI following SAH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Frontera JA, Fernandez A, Schmidt JM, et al. Defining vasospasm after subarachnoid hemorrhage: what is the most clinically relevant definition? Stroke. 2009;40:1963–8.

    Article  PubMed  Google Scholar 

  2. Wartenberg KE, Schmidt JM, Claassen J, et al. Impact of medical complications on outcome after subarachnoid hemorrhage. Crit Care Med. 2006;34:617–23 (quiz 24).

    Article  PubMed  Google Scholar 

  3. Grote E, Hassler W. The critical first minutes after subarachnoid hemorrhage. Neurosurgery. 1988;22:654–61.

    Article  CAS  PubMed  Google Scholar 

  4. Sehba FA, Bederson JB. Mechanisms of acute brain injury after subarachnoid hemorrhage. Neurol Res. 2006;28:381–98.

    Article  CAS  PubMed  Google Scholar 

  5. Sehba FA, Mostafa G, Friedrich V Jr, Bederson JB. Acute microvascular platelet aggregation after subarachnoid hemorrhage. J Neurosurg. 2005;102:1094–100.

    Article  PubMed  Google Scholar 

  6. Friedrich V, Flores R, Muller A, Bi W, Peerschke EI, Sehba FA. Reduction of neutrophil activity decreases early microvascular injury after subarachnoid haemorrhage. J Neuroinflamm. 2011;8:103.

    Article  CAS  Google Scholar 

  7. Sehba FA, Friedrich V. Early micro vascular changes after subarachnoid hemorrhage. Acta Neurochir Suppl. 2011;110:49–55.

    PubMed  Google Scholar 

  8. Smyth SS, McEver RP, Weyrich AS, et al. Platelet functions beyond hemostasis. J Thromb Haemost. 2009;7:1759–66.

    Article  CAS  PubMed  Google Scholar 

  9. Renesto P, Chignard M. Tumor necrosis factor-alpha enhances platelet activation via cathepsin G released from neutrophils. J Immunol. 1991;146:2305–9.

    CAS  PubMed  Google Scholar 

  10. Friedrich V, Flores R, Muller A, Sehba FA. Luminal platelet aggregates in functional deficits in parenchymal vessels after subarachnoid hemorrhage. Brain Res. 2010;1354:179–87.

    Article  CAS  PubMed  Google Scholar 

  11. Friedrich V, Flores R, Muller A, Sehba FA. Escape of intraluminal platelets into brain parenchyma after subarachnoid hemorrhage. Neuroscience. 2010;165:968–75.

    Article  CAS  PubMed  Google Scholar 

  12. Frontera JA, Aledort L, Gordon E, et al. Early platelet activation, inflammation and acute brain injury after a subarachnoid hemorrhage: a pilot study. J Thromb Haemost. 2012;10:711–3.

    Article  CAS  PubMed  Google Scholar 

  13. Craft RM, Chavez JJ, Bresee SJ, Wortham DC, Cohen E, Carroll RC. A novel modification of the thrombelastograph assay, isolating platelet function, correlates with optical platelet aggregation. J Lab Clin Med. 2004;143:301–9.

    Article  PubMed  Google Scholar 

  14. Swallow RA, Agarwala RA, Dawkins KD, Curzen NP. Thromboelastography: potential bedside tool to assess the effects of antiplatelet therapy? Platelets. 2006;17:385–92.

    Article  CAS  PubMed  Google Scholar 

  15. Sambu N, Hobson A, Curzen N. “Short” thrombelastography as a test of platelet reactivity in response to antiplatelet therapy: validation and reproducibility. Platelets. 2011;22:210–6.

    Article  CAS  PubMed  Google Scholar 

  16. Khurana S, Mattson JC, Westley S, O’Neill WW, Timmis GC, Safian RD. Monitoring platelet glycoprotein IIb/IIIa-fibrin interaction with tissue factor-activated thromboelastography. J Lab Clin Med. 1997;130:401–11.

    Article  CAS  PubMed  Google Scholar 

  17. Hunt WE, Hess RM. Surgical risk as related to time of intervention in the repair of intracranial aneurysms. J Neurosurg. 1968;28:14–20.

    Article  CAS  PubMed  Google Scholar 

  18. Oshiro EM, Walter KA, Piantadosi S, Witham TF, Tamargo RJ. A new subarachnoid hemorrhage grading system based on the Glasgow Coma Scale: a comparison with the Hunt and Hess and World Federation of Neurological Surgeons Scales in a clinical series. Neurosurgery. 1997;41:140–7 (discussion 7–8).

    Article  CAS  PubMed  Google Scholar 

  19. Teasdale G, Jennett B. Assessment and prognosis of coma after head injury. Acta Neurochir (Wien). 1976;34:45–55.

    Article  CAS  Google Scholar 

  20. Brott T, Adams HP Jr, Olinger CP, et al. Measurements of acute cerebral infarction: a clinical examination scale. Stroke. 1989;20:864–70.

    Article  CAS  PubMed  Google Scholar 

  21. Rankin J. Cerebral vascular accidents in patients over the age of 60. II. Prognosis. Scott Med J. 1957;2:200–15.

    CAS  PubMed  Google Scholar 

  22. van Swieten JC, Koudstaal PJ, Visser MC, Schouten HJ, van Gijn J. Interobserver agreement for the assessment of handicap in stroke patients. Stroke. 1988;19:604–7.

    Article  PubMed  Google Scholar 

  23. Sehba FA. Rat endovascular perforation model. Transl Stroke Res. 2014;5:660–8.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pisapia JM, Xu X, Kelly J, et al. Microthrombosis after experimental subarachnoid hemorrhage: time course and effect of red blood cell-bound thrombin-activated pro-urokinase and clazosentan. Exp Neurol. 2012;233:357–63.

    Article  CAS  PubMed  Google Scholar 

  25. Friedrich V, Flores R, Sehba FA. Cell death starts early after subarachnoid hemorrhage. Neurosci Lett. 2012;512:6–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Frontera JA, Ahmed W, Zach V, et al. Acute ischaemia after subarachnoid haemorrhage, relationship with early brain injury and impact on outcome: a prospective quantitative MRI study. J Neurol Neurosurg Psychiatry. 2015;86:71–8.

    Article  PubMed  Google Scholar 

  27. Hadeishi H, Suzuki A, Yasui N, Hatazawa J, Shimosegawa E. Diffusion-weighted magnetic resonance imaging in patients with subarachnoid hemorrhage. Neurosurgery. 2002;50:741–7 (discussion 7–8).

    Article  PubMed  Google Scholar 

  28. Sato K, Shimizu H, Fujimura M, Inoue T, Matsumoto Y, Tominaga T. Acute-stage diffusion-weighted magnetic resonance imaging for predicting outcome of poor-grade aneurysmal subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2010;30:1110–20.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Stein SC, Browne KD, Chen XH, Smith DH, Graham DI. Thromboembolism and delayed cerebral ischemia after subarachnoid hemorrhage: an autopsy study. Neurosurgery. 2006;59:781–7 (discussion 7–8).

    Article  PubMed  Google Scholar 

  30. Sehba FA, Mostafa G, Knopman J, Friedrich V Jr, Bederson JB. Acute alterations in microvascular basal lamina after subarachnoid hemorrhage. J Neurosurg. 2004;101:633–40.

    Article  PubMed  Google Scholar 

  31. Hussain S, Barbarite E, Chaudhry NS, et al. Search for biomarkers of intracranial aneurysms: a systematic review. World Neurosurg. 2015;84:1473–83.

    Article  PubMed  Google Scholar 

  32. Chen S, Feng H, Sherchan P, et al. Controversies and evolving new mechanisms in subarachnoid hemorrhage. Prog Neurobiol. 2014;115:64–91.

    Article  PubMed  Google Scholar 

  33. Boluijt J, Meijers JC, Rinkel GJ, Vergouwen MD. Hemostasis and fibrinolysis in delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage: a systematic review. J Cereb Blood Flow Metab. 2015;35:724–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Frontera JA. Clinical trials in cardiac arrest and subarachnoid hemorrhage: lessons from the past and ideas for the future. Stroke Res Treat. 2013;2013:263974.

    PubMed  PubMed Central  Google Scholar 

  35. Vergouwen MD, Bakhtiari K, van Geloven N, Vermeulen M, Roos YB, Meijers JC. Reduced ADAMTS13 activity in delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2009;29:1734–41.

    Article  CAS  PubMed  Google Scholar 

  36. Suzuki S, Suzuki M, Iwabuchi T, Kamata Y. Role of multiple cerebral microthrombosis in symptomatic cerebral vasospasm: with a case report. Neurosurgery. 1983;13:199–203.

    Article  CAS  PubMed  Google Scholar 

  37. Suzuki S, Kimura M, Souma M, Ohkima H, Shimizu T, Iwabuchi T. Cerebral microthrombosis in symptomatic cerebral vasospasm—a quantitative histological study in autopsy cases. Neurol Med Chir. 1990;30:309–16.

    Article  CAS  Google Scholar 

  38. Chou SH, Feske SK, Atherton J, et al. Early elevation of serum tumor necrosis factor-alpha is associated with poor outcome in subarachnoid hemorrhage. J Invest Med. 2012;60:1054–8.

    Article  CAS  Google Scholar 

  39. Lackner P, Dietmann A, Beer R, et al. Cellular microparticles as a marker for cerebral vasospasm in spontaneous subarachnoid hemorrhage. Stroke. 2010;41:2353–7.

    Article  PubMed  Google Scholar 

  40. Chou SH, Feske SK, Simmons SL, et al. Elevated peripheral neutrophils and matrix metalloproteinase 9 as biomarkers of functional outcome following subarachnoid hemorrhage. Transl Stroke Res. 2011;2:600–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ishikawa M, Kusaka G, Yamaguchi N, et al. Platelet and leukocyte adhesion in the microvasculature at the cerebral surface immediately after subarachnoid hemorrhage. Neurosurgery. 2009;64:546–53 (discussion 53–54).

    Article  PubMed  Google Scholar 

  42. van den Bergh WM, MASH Study Group, Algra A, et al. Randomized controlled trial of acetylsalicylic acid in aneurysmal subarachnoid hemorrhage: the MASH Study. Stroke. 2006;37:2326–30.

    Article  PubMed  Google Scholar 

  43. van den Bergh WM, Kerr RS, Algra A, Rinkel GJ, Molyneux AJ, International Subarachnoid Aneurysm Trial Collaborative Group. Effect of antiplatelet therapy for endovascular coiling in aneurysmal subarachnoid hemorrhage. Stroke. 2009;40:1969–72.

    Article  PubMed  Google Scholar 

  44. Gross BA, Rosalind Lai PM, Frerichs KU, Du R. Aspirin and aneurysmal subarachnoid hemorrhage. World Neurosurg. 2014;82:1127–30.

  45. Dorhout Mees SM, Rinkel GJ, Hop JW, Algra A, van Gijn J. Antiplatelet therapy in aneurysmal subarachnoid hemorrhage: a systematic review. Stroke. 2003;34:2285–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Frontera received funding for this project from the American Heart Association (11CRP5270003) and the Research Program Committee of the Cleveland Clinic (RPC # 2013-1014).

Author contributions

J.A. Frontera was responsible for study design, collecting, analyzing and interpreting data, writing the manuscript, and final approval of the version to be published. J.J. Provencio was responsible for interpreting the data, revising the intellectual content, and final approval of the version to be published. F.A. Sehba was responsible for study design, analyzing and interpreting data, revising the intellectual content and final approval of the version to be published. T.M. McIntyre was responsible for revising the intellectual content, and final approval of the version to be published. A.S. Nowacki was responsible for analyzing and interpreting data and final approval of the version to be published. E. Gordon was responsible for collecting data and final approval of the version to be published. J.M. Weimer was responsible for collecting data and final approval of the version to be published. L. Aledort was responsible for study design, analyzing and interpreting data, revising the intellectual content, and final approval of the version to be published.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer A. Frontera.

Ethics declarations

Conflict of interest

None.

Electronic supplementary material

Below is the link to the electronic supplementary materials.

12028_2016_292_MOESM1_ESM.tif

Supplementary Figure 1. Platelet activation, C-reactive protein (CRP) in jugular and peripheral venous blood over the first 72 hours following aneurysm rupture. Whisker bars represent the standard error of the mean. MA = maximum amplitude, SAH = subarachnoid hemorrhage (TIF 71 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frontera, J.A., Provencio, J.J., Sehba, F.A. et al. The Role of Platelet Activation and Inflammation in Early Brain Injury Following Subarachnoid Hemorrhage. Neurocrit Care 26, 48–57 (2017). https://doi.org/10.1007/s12028-016-0292-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-016-0292-4

Keywords

Navigation