Skip to main content

Advertisement

Log in

The Insertion and Management of External Ventricular Drains: An Evidence-Based Consensus Statement

A Statement for Healthcare Professionals from the Neurocritical Care Society

  • Review Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

External ventricular drains (EVDs) are commonly placed to monitor intracranial pressure and manage acute hydrocephalus in patients with a variety of intracranial pathologies. The indications for EVD insertion and their efficacy in the management of these various conditions have been previously addressed in guidelines published by the Brain Trauma Foundation, American Heart Association and combined committees of the American Association of Neurological Surgeons and the Congress of Neurological Surgeons. While it is well recognized that placement of an EVD may be a lifesaving intervention, the benefits can be offset by procedural and catheter-related complications, such as hemorrhage along the catheter tract, catheter malposition, and CSF infection. Despite their widespread use, there are a lack of high-quality data regarding the best methods for placement and management of EVDs to minimize these risks. Existing recommendations are frequently based on observational data from a single center and may be biased to the authors’ view. To address the need for a comprehensive set of evidence-based guidelines for EVD management, the Neurocritical Care Society organized a committee of experts in the fields of neurosurgery, neurology, neuroinfectious disease, critical care, pharmacotherapy, and nursing. The Committee generated clinical questions relevant to EVD placement and management. They developed recommendations based on a thorough literature review using the Grading of Recommendations Assessment, Development, and Evaluation system, with emphasis placed not only on the quality of the evidence, but also on the balance of benefits versus risks, patient values and preferences, and resource considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Personal communication with author.

References

  1. Srinivasan VM, O’Neill BR, Jho D, Whiting DM, Oh MY. The history of external ventricular drainage. J Neurosurg. 2014;120:228–36.

    Article  PubMed  Google Scholar 

  2. Lundberg N. Continuous recording and control of ventricular fluid pressure in neurosurgical practice. Acta Psychiatr Scand. 1960;36:1–193.

    CAS  Google Scholar 

  3. Sussman ES, Kellner CP, Nelson E, et al. Hemorrhagic complications of ventriculostomy: incidence and predictors in patients with intracerebral hemorrhage. J Neurosurg. 2014;120:931–6.

    Article  PubMed  Google Scholar 

  4. Chesnut R, Videtta W, Vespa P, Le Roux P. Participants in the international multidisciplinary consensus conference on multimodality monitoring. Intracranial pressure monitoring: fundamental considerations and rationale for monitoring. Neurocrit Care. 2014;21(Suppl 2):S64–84.

    Article  PubMed  Google Scholar 

  5. Bratton SL, Chestnut RM, Ghajar J, et al. Guidelines for the management of severe traumatic brain injury. VII. Intracranial pressure monitoring technology. J Neurotrauma. 2007;24(Suppl 1):S45–54.

    PubMed  Google Scholar 

  6. Guyot LL, Dowling C, Diaz FG, Michael DB. Cerebral monitoring devices: analysis of complications. Acta Neurochir Suppl. 1998;71:47–9.

    CAS  PubMed  Google Scholar 

  7. Rossi S, Buzzi F, Paparella A, Mainini P, Stocchetti N. Complications and safety associated with ICP monitoring: a study of 542 patients. Acta Neurochir Suppl. 1998;71:91–3.

    CAS  PubMed  Google Scholar 

  8. O’Neill BR, Velez DA, Braxton EE, Whiting D, Oh MY. A survey of ventriculostomy and intracranial pressure monitor placement practices. Surg Neurol. 2008;70:268–73; discussion 73.

    Article  PubMed  Google Scholar 

  9. Rehman T, Rehman AU, Rehman A, et al. A US-based survey on ventriculostomy practices. Clin Neurol Neurosurg. 2012;114:651–4.

    Article  PubMed  Google Scholar 

  10. Paramore CG, Turner DA. Relative risks of ventriculostomy infection and morbidity. Acta Neurochir (Wien). 1994;127:79–84.

    Article  CAS  Google Scholar 

  11. Maniker AH, Vaynman AY, Karimi RJ, Sabit AO, Holland B. Hemorrhagic complications of external ventricular drainage. Neurosurgery. 2006;59:ONS419–24; discussion ONS24–5.

    PubMed  Google Scholar 

  12. Kakarla UK, Kim LJ, Chang SW, Theodore N, Spetzler RF. Safety and accuracy of bedside external ventricular drain placement. Neurosurgery. 2008;63:ONS162–6; discussion ONS6–7.

    PubMed  Google Scholar 

  13. Gardner PA, Engh J, Atteberry D, Moossy JJ. Hemorrhage rates after external ventricular drain placement. J Neurosurg. 2009;110:1021–5.

    Article  PubMed  Google Scholar 

  14. Tanweer O, Boah A, Huang PP. Risks for hemorrhagic complications after placement of external ventricular drains with early chemical prophylaxis against venous thromboembolisms. J Neurosurg. 2013;119:1309–13.

    Article  PubMed  Google Scholar 

  15. Pastorek RA, Cripps MW, Bernstein IH, et al. The Parkland Protocol’s modified Berne-Norwood criteria predict two tiers of risk for traumatic brain injury progression. J Neurotrauma. 2014;31:1737–43.

    Article  PubMed Central  PubMed  Google Scholar 

  16. NCS Guidelines. 2015. http://www.neurocriticalcare.org/education-training/ncs-guidelines. Accessed 16th Aug 2015.

  17. Andrews JC, Schunemann HJ, Oxman AD, et al. GRADE guidelines: 15. Going from evidence to recommendation-determinants of a recommendation’s direction and strength. J Clin Epidemiol. 2013;66:726–35.

    Article  PubMed  Google Scholar 

  18. Guyatt GH, Oxman AD, Kunz R, et al. Going from evidence to recommendations. Br Med J. 2008;336:1049–51.

    Article  Google Scholar 

  19. Alexander PE, Brito JP, Neumann I, et al. World Health Organization strong recommendations based on low-quality evidence (study quality) are frequent and often inconsistent with GRADE guidance. J Clin Epidemiol. 2014. doi:10.1016/j.jclinepi.2014.10.011.

    Google Scholar 

  20. Guyatt GH, Schunemann HJ, Djulbegovic B, Akl EA. Guideline panels should not GRADE good practice statements. J Clin Epidemiol. 2015;68:597–600.

    Article  PubMed  Google Scholar 

  21. Foreman PM, Hendrix P, Griessenauer CJ, Schmalz PG, Harrigan MR. External ventricular drain placement in the intensive care unit versus operating room: evaluation of complications and accuracy. Clin Neurol Neurosurg. 2015;128:94–100.

    Article  PubMed  Google Scholar 

  22. Aoki N. Rapid bedside technique for percutaneous ventricular drainage in patients with severe subarachnoid haemorrhage. Technical note. Acta Neurochir. 1991;113:184–5.

    Article  CAS  PubMed  Google Scholar 

  23. Gigante P, Hwang BY, Appelboom G, Kellner CP, Kellner MA, Connolly ES. External ventricular drainage following aneurysmal subarachnoid haemorrhage. Br J Neurosurg. 2010;24:625–32.

    Article  PubMed  Google Scholar 

  24. Krotz M, Linsenmaier U, Kanz KG, Pfeifer KJ, Mutschler W, Reiser M. Evaluation of minimally invasive percutaneous CT-controlled ventriculostomy in patients with severe head trauma. Eur Radiol. 2004;14:227–33.

    Article  CAS  PubMed  Google Scholar 

  25. Mahan M, Spetzler RF, Nakaji P. Electromagnetic stereotactic navigation for external ventricular drain placement in the intensive care unit. J Clin Neurosci. 2013;20:1718–22.

    Article  PubMed  Google Scholar 

  26. Roitberg BZ, Khan N, Alp MS, Hersonskey T, Charbel FT, Ausman JI. Bedside external ventricular drain placement for the treatment of acute hydrocephalus. Br J Neurosurg. 2001;15:324–7.

    Article  CAS  PubMed  Google Scholar 

  27. Ruchholtz S, Waydhas C, Muller A, et al. Percutaneous computed tomographic-controlled ventriculostomy in severe traumatic brain injury. J Trauma. 1998;45:505–11.

    Article  CAS  PubMed  Google Scholar 

  28. Schodel P, Proescholdt M, Brawanski A, Bele S, Schebesch KM. Ventriculostomy for acute hydrocephalus in critically ill patients on the ICU—outcome analysis of two different procedures. Br J Neurosurg. 2012;26:227–30.

    Article  PubMed  Google Scholar 

  29. Trick WE, Kioski CM, Howard KM, et al. Outbreak of Pseudomonas aeruginosa ventriculitis among patients in a neurosurgical intensive care unit. Infect Control Hosp Epidemiol. 2000;21:204–8.

    Article  CAS  PubMed  Google Scholar 

  30. Schodel P, Proescholdt M, Ullrich OW, Brawanski A, Schebesch KM. An outcome analysis of two different procedures of burr-hole trephine and external ventricular drainage in acute hydrocephalus. J Clin Neurosci. 2012;19:267–70.

    Article  PubMed  Google Scholar 

  31. Arabi Y, Memish ZA, Balkhy HH, et al. Ventriculostomy-associated infections: incidence and risk factors. Am J Infect Control. 2005;33:137–43.

    Article  PubMed  Google Scholar 

  32. Pollock BE, Brown RD Jr. Management of cysts arising after radiosurgery to treat intracranial arteriovenous malformations. Neurosurgery. 2001;49:259–64; discussion 64–5.

    CAS  PubMed  Google Scholar 

  33. Pollock JR, Hayward RD. Adverse operative events in neurosurgical training: incidence, trends and proposals for prevention. Br J Neurosurg. 2001;15:312–8.

    Article  CAS  PubMed  Google Scholar 

  34. Bochicchio M, Latronico N, Zappa S, Beindorf A, Candiani A. Bedside burr hole for intracranial pressure monitoring performed by intensive care physicians. A 5-year experience. Intensive Care Med. 1996;22:1070–4.

    Article  CAS  PubMed  Google Scholar 

  35. Ehtisham A, Taylor S, Bayless L, Klein MW, Janzen JM. Placement of external ventricular drains and intracranial pressure monitors by neurointensivists. Neurocrit Care. 2009;10:241–7.

    Article  PubMed  Google Scholar 

  36. Alaraj A, Charbel FT, Birk D, et al. Role of cranial and spinal virtual and augmented reality simulation using immersive touch modules in neurosurgical training. Neurosurgery. 2013;72(Suppl 1):115–23.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Alaraj A, Lemole MG, Finkle JH, et al. Virtual reality training in neurosurgery: review of current status and future applications. Surg Neurol Int. 2011;2:52.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Krombach G, Ganser A, Fricke C, et al. Virtual placement of frontal ventricular catheters using frameless neuronavigation: an “unbloody training” for young neurosurgeons. Minim Invasive Neurosurg. 2000;43:171–5.

    Article  CAS  PubMed  Google Scholar 

  39. Lemole GM Jr, Banerjee PP, Luciano C, Neckrysh S, Charbel FT. Virtual reality in neurosurgical education: part-task ventriculostomy simulation with dynamic visual and haptic feedback. Neurosurgery. 2007;61:142–8; discussion 8–9.

    Article  PubMed  Google Scholar 

  40. Yudkowsky R, Luciano C, Banerjee P, et al. Practice on an augmented reality/haptic simulator and library of virtual brains improves residents’ ability to perform a ventriculostomy. Simul Healthc. 2013;8:25–31.

    Article  PubMed  Google Scholar 

  41. Schirmer CM, Elder JB, Roitberg B, Lobel DA. Virtual reality-based simulation training for ventriculostomy: an evidence-based approach. Neurosurgery. 2013;73(Suppl 1):66–73.

    Article  PubMed  Google Scholar 

  42. Kirkman MA, Ahmed M, Albert AF, Wilson MH, Nandi D, Sevdalis N. The use of simulation in neurosurgical education and training. systematic review. J Neurosurg. 2014;121:228–46.

    Article  PubMed  Google Scholar 

  43. Dey M, Stadnik A, Riad F, et al. Bleeding and infection with external ventricular drainage: a systematic review in comparison with adjudicated adverse events in the ongoing Clot Lysis Evaluating Accelerated Resolution of Intraventricular Hemorrhage Phase III (CLEAR-III IHV) trial. Neurosurgery. 2015;76:291–300; discussion 1.

    Article  PubMed  Google Scholar 

  44. Naff N, Williams MA, Keyl PM, et al. Low-dose recombinant tissue-type plasminogen activator enhances clot resolution in brain hemorrhage: the intraventricular hemorrhage thrombolysis trial. Stroke. 2011;42:3009–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Bauer DF, McGwin G Jr, Melton SM, George RL, Markert JM. The relationship between INR and development of hemorrhage with placement of ventriculostomy. J Trauma. 2011;70:1112–7.

    Article  PubMed  Google Scholar 

  46. Binz DD, Toussaint LG 3rd, Friedman JA. Hemorrhagic complications of ventriculostomy placement: a meta-analysis. Neurocrit Care. 2009;10:253–6.

    Article  PubMed  Google Scholar 

  47. Patil V, Lacson R, Vosburgh KG, et al. Factors associated with external ventricular drain placement accuracy: data from an electronic health record repository. Acta Neurochir (Wien). 2013;155:1773–9.

    Article  Google Scholar 

  48. Bergdal O, Springborg JB, Holst AV, et al. Accuracy of tunnelated vs. bolt-connected external ventricular drains. Clin Neurol Neurosurg. 2013;115:1972–5.

    Article  PubMed  Google Scholar 

  49. Huyette DR, Turnbow BJ, Kaufman C, Vaslow DF, Whiting BB, Oh MY. Accuracy of the freehand pass technique for ventriculostomy catheter placement: retrospective assessment using computed tomography scans. J Neurosurg. 2008;108:88–91.

    Article  PubMed  Google Scholar 

  50. Abdoh MG, Bekaert O, Hodel J, et al. Accuracy of external ventricular drainage catheter placement. Acta Neurochir (Wien). 2012;154:153–9.

    Article  Google Scholar 

  51. Muirhead WR, Basu S. Trajectories for frontal external ventricular drain placement: virtual cannulation of adults with acute hydrocephalus. Br J Neurosurg. 2012;26:710–6.

    Article  PubMed  Google Scholar 

  52. Rehman T, Rehman A, Ali R, et al. A radiographic analysis of ventricular trajectories. World Neurosurg. 2013;80:173–8.

    Article  PubMed  Google Scholar 

  53. O’Leary ST, Kole MK, Hoover DA, Hysell SE, Thomas A, Shaffrey CI. Efficacy of the Ghajar Guide revisited: a prospective study. J Neurosurg. 2000;92:801–3.

    Article  PubMed  Google Scholar 

  54. Greenfield JP, Schwartz TH. Catheter placement for Ommaya reservoirs with frameless surgical navigation: technical note. Stereotact Funct Neurosurg. 2008;86:101–5.

    Article  PubMed  Google Scholar 

  55. Crowley RW, Dumont AS, Asthagiri AR, et al. Intraoperative ultrasound guidance for the placement of permanent ventricular cerebrospinal fluid shunt catheters: a single-center historical cohort study. World Neurosurg. 2014;81:397–403.

    Article  PubMed  Google Scholar 

  56. Banerjee PP, Luciano CJ, Lemole GM Jr, Charbel FT, Oh MY. Accuracy of ventriculostomy catheter placement using a head- and hand-tracked high-resolution virtual reality simulator with haptic feedback. J Neurosurg. 2007;107:515–21.

    Article  PubMed  Google Scholar 

  57. Hayhurst C, Beems T, Jenkinson MD, et al. Effect of electromagnetic-navigated shunt placement on failure rates: a prospective multicenter study. J Neurosurg. 2010;113:1273–8.

    Article  PubMed  Google Scholar 

  58. Gould MK, Garcia DA, Wren SM, et al. Prevention of VTE in nonorthopedic surgical patients: antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141:e227S–77S.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Zhang C, Zeng W, Zhou H, et al. The efficacy of intermittent pneumatic compression in the prevention of venous thromboembolism in medical critically ill patients. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2011;23:563–5.

    PubMed  Google Scholar 

  60. Eppsteiner RW, Shin JJ, Johnson J, van Dam RM. Mechanical compression versus subcutaneous heparin therapy in postoperative and posttrauma patients: a systematic review and meta-analysis. World J Surg. 2010;34:10–9.

    Article  PubMed  Google Scholar 

  61. Agnelli G, Piovella F, Buoncristiani P, et al. Enoxaparin plus compression stockings compared with compression stockings alone in the prevention of venous thromboembolism after elective neurosurgery. N Engl J Med. 1998;339:80–5.

    Article  CAS  PubMed  Google Scholar 

  62. Khaldi A, Helo N, Schneck MJ, Origitano TC. Venous thromboembolism: deep venous thrombosis and pulmonary embolism in a neurosurgical population. J Neurosurg. 2011;114:40–6.

    Article  PubMed  Google Scholar 

  63. Nurmohamed MT, van Riel AM, Henkens CM, et al. Low molecular weight heparin and compression stockings in the prevention of venous thromboembolism in neurosurgery. Thromb Haemost. 1996;75:233–8.

    CAS  PubMed  Google Scholar 

  64. Chan AT, Atiemo A, Diran LK, et al. Venous thromboembolism occurs frequently in patients undergoing brain tumor surgery despite prophylaxis. J Thromb Thrombolysis. 1999;8:139–42.

    Article  CAS  PubMed  Google Scholar 

  65. Goldstein JN, Fazen LE, Wendell L, et al. Risk of thromboembolism following acute intracerebral hemorrhage. Neurocrit Care. 2009;10:28–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Lacut K, Bressollette L, Le Gal G, et al. Prevention of venous thrombosis in patients with acute intracerebral hemorrhage. Neurology. 2005;65:865–9.

    Article  CAS  PubMed  Google Scholar 

  67. Kahn SR, Lim W, Dunn AS, et al. Prevention of vte in nonsurgical patients: antithrombotic therapy and prevention of thrombosis, 9th ed: american college of chest physicians evidence-based clinical practice guidelines. Chest. 2012;141:e195S–226S.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Hart R, Aguilar M. Anticoagulation in atrial fibrillation: selected controversies including optimal anticoagulation intensity, treatment of intracerebral hemorrhage. J Thromb Thrombolysis. 2008;25:26–32.

    Article  CAS  PubMed  Google Scholar 

  69. Iorio A, Agnelli G. Low-molecular-weight and unfractionated heparin for prevention of venous thromboembolism in neurosurgery: a meta-analysis. Arch Intern Med. 2000;160:2327–32.

    Article  CAS  PubMed  Google Scholar 

  70. Collen JF, Jackson JL, Shorr AF, Moores LK. Prevention of venous thromboembolism in neurosurgery: a metaanalysis. Chest. 2008;134:237–49.

    Article  PubMed  Google Scholar 

  71. Danish SF, Burnett MG, Ong JG, Sonnad SS, Maloney-Wilensky E, Stein SC. Prophylaxis for deep venous thrombosis in craniotomy patients: a decision analysis. Neurosurgery. 2005;56:1286–92; discussion 92–4.

    Article  PubMed  Google Scholar 

  72. Jamjoom AA, Jamjoom AB. Safety and efficacy of early pharmacological thromboprophylaxis in traumatic brain injury: systematic review and meta-analysis. J Neurotrauma. 2013;30:503–11.

    Article  PubMed  Google Scholar 

  73. Boonyawat K, Crowther MA. Venous thromboembolism prophylaxis in critically ill patients. Semin Thromb Hemost. 2015;41:68–74.

    Article  PubMed  Google Scholar 

  74. Sachdeva A, Dalton M, Amaragiri SV, Lees T. Elastic compression stockings for prevention of deep vein thrombosis. Cochrane Database Syst Rev. 2010;7:CD001484.

    PubMed  Google Scholar 

  75. Collaboration TCT. Effectiveness of thigh-length graduated compression stockings to reduce the risk of deep vein thrombosis after stroke (CLOTS trial 1): a multicentre, randomised controlled trial. Lancet. 2009;373:1958–65.

    Article  Google Scholar 

  76. Arabi YM, Khedr M, Dara SI, et al. Use of intermittent pneumatic compression and not graduated compression stockings is associated with lower incident VTE in critically ill patients: a multiple propensity scores adjusted analysis. Chest. 2013;144:152–9.

    Article  PubMed  Google Scholar 

  77. Dennis M, Sandercock P, Reid J, Graham C, Forbes J, Murray G. Effectiveness of intermittent pneumatic compression in reduction of risk of deep vein thrombosis in patients who have had a stroke (CLOTS 3): a multicentre randomised controlled trial. Lancet. 2013;382:516–24.

    Article  CAS  PubMed  Google Scholar 

  78. Scales DC, Riva-Cambrin J, Le TL, Pinto R, Cook DJ, Granton JT. Prophylaxis against venous thromboembolism in neurointensive care patients: survey of Canadian practice. J Crit Care. 2009;24:176–84.

    Article  PubMed  Google Scholar 

  79. British Committee for Standards in Haematology Writing. G, Baglin TP, Brush J, Streiff M. Guidelines on use of vena cava filters. Br J Haematol. 2006;134:590–5.

    Article  Google Scholar 

  80. Cuschieri J, Freeman B, O’Keefe G, et al. Inflammation and the host response to injury a large-scale collaborative project: patient-oriented research core standard operating procedure for clinical care X. Guidelines for venous thromboembolism prophylaxis in the trauma patient. J Trauma. 2008;65:944–50.

    Article  PubMed Central  PubMed  Google Scholar 

  81. Rogers FB, Cipolle MD, Velmahos G, Rozycki G, Luchette FA. Practice management guidelines for the prevention of venous thromboembolism in trauma patients: the EAST practice management guidelines work group. J Trauma. 2002;53:142–64.

    Article  PubMed  Google Scholar 

  82. Kaufman JA, Kinney TB, Streiff MB, et al. Guidelines for the use of retrievable and convertible vena cava filters: report from the Society of Interventional Radiology multidisciplinary consensus conference. J Vasc Interv Radiol. 2006;17:449–59.

    Article  PubMed  Google Scholar 

  83. Decousus H, Leizorovicz A, Parent F, et al. A clinical trial of vena caval filters in the prevention of pulmonary embolism in patients with proximal deep-vein thrombosis. N Engl J Med. 1998;338:409–16.

    Article  CAS  PubMed  Google Scholar 

  84. Girard TD, Philbrick JT, Fritz Angle J, Becker DM. Prophylactic vena cava filters for trauma patients: a systematic review of the literature. Thromb Res. 2003;112:261–7.

    Article  CAS  PubMed  Google Scholar 

  85. Karmy-Jones R, Jurkovich GJ, Velmahos GC, et al. Practice patterns and outcomes of retrievable vena cava filters in trauma patients: an AAST multicenter study. J Trauma. 2007;62:17–24; discussion -5.

    Article  PubMed  Google Scholar 

  86. Sarosiek S, Crowther M, Sloan JM. Indications, complications, and management of inferior vena cava filters: the experience in 952 patients at an academic hospital with a level I trauma center. JAMA Intern Med. 2013;173:513–7.

    Article  PubMed  Google Scholar 

  87. Macdonald RL, Amidei C, Baron J, et al. Randomized, pilot study of intermittent pneumatic compression devices plus dalteparin versus intermittent pneumatic compression devices plus heparin for prevention of venous thromboembolism in patients undergoing craniotomy. Surg Neurol. 2003;59:363–72; discussion 72–4.

    Article  PubMed  Google Scholar 

  88. Cook D, Meade M, Guyatt G, et al. Dalteparin versus unfractionated heparin in critically ill patients. N Engl J Med. 2011;364:1305–14.

    Article  CAS  PubMed  Google Scholar 

  89. Turpie AG, Bauer KA, Caprini JA, Comp PC, Gent M, Muntz JE. Fondaparinux combined with intermittent pneumatic compression vs. intermittent pneumatic compression alone for prevention of venous thromboembolism after abdominal surgery: a randomized, double-blind comparison. J Thromb Haemost. 2007;5:1854–61.

    Article  CAS  PubMed  Google Scholar 

  90. Hemphill JC 3rd, Greenberg SM, Anderson CS, et al. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2015;46:2032–60.

    Article  PubMed  Google Scholar 

  91. Nathens AB, Cryer HG, Fildes J. The American College of Surgeons Trauma Quality Improvement Program. Surg Clin N Am. 2012;92:441–54, x–xi.

  92. Norwood SH, McAuley CE, Berne JD, et al. Prospective evaluation of the safety of enoxaparin prophylaxis for venous thromboembolism in patients with intracranial hemorrhagic injuries. Arch Surg. 2002;137:696–701; discussion -2.

    Article  CAS  PubMed  Google Scholar 

  93. Chan KH, Mann KS. Prolonged therapeutic external ventricular drainage: a prospective study. Neurosurgery. 1988;23:436–8.

    Article  CAS  PubMed  Google Scholar 

  94. Omar MA, Mohd Haspani MS. The risk factors of external ventricular drainage-related infection at hospital kuala lumpur: an observational study. Malays J Med Sci. 2010;17:48–54.

    PubMed Central  PubMed  Google Scholar 

  95. Lozier A, Sciacca R, Romagnoli M. Connolly. Ventriculostomy-related infections: a critical review of the literature. Neurosurgery. 2002;51:170–81; discussion 81–2.

    Article  PubMed  Google Scholar 

  96. Horan TC, Andrus M, Dudeck MA. CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control. 2008;36:309–32.

    Article  PubMed  Google Scholar 

  97. Mayhall CG, Archer NH, Lamb VA, et al. Ventriculostomy-related infections. A prospective epidemiologic study. N Engl J Med. 1984;310:553–9.

    Article  CAS  PubMed  Google Scholar 

  98. Korinek AM, Reina M, Boch AL, Rivera AO, De Bels D, Puybasset L. Prevention of external ventricular drain–related ventriculitis. Acta Neurochir (Wien). 2005;147:39–45; discussion -6.

    Article  Google Scholar 

  99. Scheithauer S, Burgel U, Ryang YM, et al. Prospective surveillance of drain associated meningitis/ventriculitis in a neurosurgery and neurological intensive care unit. J Neurol Neurosurg Psychiatry. 2009;80:1381–5.

    Article  CAS  PubMed  Google Scholar 

  100. Arif SH, Bhat AR, Wani MA, et al. Infective and non-infective complications of external ventricular drainage. JK Pract. 2012;17:27–32.

    Google Scholar 

  101. Bota DP, Lefranc F, Vilallobos HR, Brimioulle S, Vincent JL. Ventriculostomy-related infections in critically ill patients: a 6-year experience. J Neurosurg. 2005;103:468–72.

    Article  PubMed  Google Scholar 

  102. Camacho EF, Boszczowski I, Basso M, et al. Infection rate and risk factors associated with infections related to external ventricular drain. Infection. 2011;39:47–51.

    Article  CAS  PubMed  Google Scholar 

  103. Chi H, Chang KY, Chang HC, Chiu NC, Huang FY. Infections associated with indwelling ventriculostomy catheters in a teaching hospital. Int J Infect Dis. 2010;14:e216–9.

    Article  PubMed  Google Scholar 

  104. Lyke K, Obasanjo O, Williams M, O’Brien M, Chotani R, Perl T. Ventriculitis complicating use of intraventricular catheters in adult neurosurgical patients. Clin Infect Dis. 2001;33:2028–33.

    Article  CAS  PubMed  Google Scholar 

  105. Dellit TH, Chan JD, Fulton C, et al. Reduction in Clostridium difficile infections among neurosurgical patients associated with discontinuation of antimicrobial prophylaxis for the duration of external ventricular drain placement. Infect Control Hosp Epidemiol. 2014;35:589–90.

    Article  PubMed  Google Scholar 

  106. Alleyne CH Jr, Hassan M, Zabramski JM. The efficacy and cost of prophylactic and perioprocedural antibiotics in patients with external ventricular drains. Neurosurgery. 2000;47:1124–7; discussion 7–9.

    Article  PubMed  Google Scholar 

  107. Poon WS, Ng S, Wai S. CSF antibiotic prophylaxis for neurosurgical patients with ventriculostomy: a randomised study. Acta Neurochir Suppl. 1998;71:146–8.

    CAS  PubMed  Google Scholar 

  108. Saini NS, Dewan Y, Grewal SS. Efficacy of periprocedural vs extended use of antibiotics in patients with external ventricular drains—a randomized trial. Indian J Neurotrauma. 2012;9:30–2.

    Article  Google Scholar 

  109. Wong GK, Poon WS, Lyon D, Wai S. Cefepime vs. Ampicillin/Sulbactam and Aztreonam as antibiotic prophylaxis in neurosurgical patients with external ventricular drain: result of a prospective randomized controlled clinical trial. J Clin Pharm Ther. 2006;31:231–5.

    Article  CAS  PubMed  Google Scholar 

  110. Blomstedt GC. Results of trimethoprim-sulfamethoxazole prophylaxis in ventriculostomy and shunting procedures. A double-blind randomized trial. J Neurosurg. 1985;62:694–7.

    Article  CAS  PubMed  Google Scholar 

  111. Zabramski J, Whiting D, Darouiche R, et al. Efficacy of antimicrobial-impregnated external ventricular drain catheters: a prospective, randomized, controlled trial. J Neurosurg. 2003;98:725–30.

    Article  PubMed  Google Scholar 

  112. Wong GK, Ip M, Poon WS, Mak CW, Ng RY. Antibiotics-impregnated ventricular catheter versus systemic antibiotics for prevention of nosocomial CSF and non-CSF infections: a prospective randomised clinical trial. J Neurol Neurosurg Psychiatry. 2010;81:1064–7.

    Article  PubMed  Google Scholar 

  113. Pople I, Poon W, Assaker R, et al. Comparison of infection rate with the use of antibiotic-impregnated vs standard extraventricular drainage devices: a prospective, randomized controlled trial. Neurosurgery. 2012;71:6–13.

    Article  PubMed  Google Scholar 

  114. Harrop JS, Sharan AD, Ratliff J, et al. Impact of a standardized protocol and antibiotic-impregnated catheteis on ventriculostomy infection rates in cerebrovascular patients. Neurosurgery. 2010;67:187–91.

    Article  PubMed  Google Scholar 

  115. Muttaiyah S, Ritchie S, John S, Mee E, Roberts S. Efficacy of antibiotic-impregnated external ventricular drain catheters. J Clin Neurosci. 2010;17:296–8.

    Article  CAS  PubMed  Google Scholar 

  116. McLaughlin N, St-Antoine P, Bojanowski MW. Impact of antibiotic-impregnated catheters on the timing of cerebrospinal fluid infections in non-traumatic subarachnoid hemorrhage. Acta Neurochir (Wien). 2012;154:761–6; discussion 7.

    Article  Google Scholar 

  117. Mikhaylov Y, Wilson TJ, Rajajee V, et al. Efficacy of antibiotic-impregnated external ventricular drains in reducing ventriculostomy-associated infections. J Clin Neurosci. 2014;21:765–8.

    Article  PubMed  Google Scholar 

  118. Keong NC, Bulters DO, Richards HK, et al. The SILVER (Silver Impregnated Line Versus EVD Randomized trial): a double-blind, prospective, randomized, controlled trial of an intervention to reduce the rate of external ventricular drain infection. Neurosurgery. 2012;71:394–403; discussion -4.

    Article  PubMed  Google Scholar 

  119. Lackner P, Beer R, Broessner G, et al. Efficacy of silver nanoparticles-impregnated external ventricular drain catheters in patients with acute occlusive hydrocephalus. Neurocrit Care. 2008;8:360–5.

    Article  PubMed  Google Scholar 

  120. Fichtner J, Guresir E, Seifert V, Raabe A. Efficacy of silver-bearing external ventricular drainage catheters: a retrospective analysis. J Neurosurg. 2010;112:840–6.

    Article  PubMed  Google Scholar 

  121. Lajcak M, Heidecke V, Haude KH, Rainov NG. Infection rates of external ventricular drains are reduced by the use of silver-impregnated catheters. Acta Neurochir (Wien). 2013;155:875–81.

    Article  CAS  Google Scholar 

  122. Winkler AS, Tluway A, Slottje D, Schmutzhard E, Hartl R. The pattern of neurosurgical disorders in rural northern Tanzania: a prospective hospital-based study. World Neurosurg. 2010;73:264–9.

    Article  PubMed  Google Scholar 

  123. Lemcke J, Depner F, Meier U. The impact of silver nanoparticle-coated and antibiotic-impregnated external ventricular drainage catheters on the risk of infections: a clinical comparison of 95 patients. Acta Neurochir Suppl. 2012;114:347–50.

    Article  PubMed  Google Scholar 

  124. Wang JH, Lin PC, Chou CH, et al. Intraventricular antimicrobial therapy in postneurosurgical Gram-negative bacillary meningitis or ventriculitis: a hospital-based retrospective study. J Microbiol Immunol Infect. 2014;47:204–10.

    Article  CAS  PubMed  Google Scholar 

  125. Wilkie MD, Hanson MF, Statham PF, Brennan PM. Infections of cerebrospinal fluid diversion devices in adults: the role of intraventricular antimicrobial therapy. J Infect. 2013;66:239–46.

    Article  CAS  PubMed  Google Scholar 

  126. Tangden T, Enblad P, Ullberg M, et al. Neurosurgical gram-negative bacillary ventriculitis and meningitis: a retrospective study evaluating the efficacy of intraventricular gentamicin therapy in 31 consecutive cases. Clin Infect Dis. 2011;52:1310–6.

    Article  PubMed  CAS  Google Scholar 

  127. McClellan N, Swanson JM, Magnotti LJ, et al. Adjunctive intraventricular antibiotic therapy for bacterial central nervous system infections in critically ill patients with traumatic brain injury. Ann Pharmacother. 2015;49:515–22.

    Article  CAS  PubMed  Google Scholar 

  128. Ziaka M, Markantonis SL, Fousteri M, et al. Combined intravenous and intraventricular administration of colistin methanesulfonate in critically ill patients with central nervous system infection. Antimicrob Agents Chemother. 2013;57:1938–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  129. Pfausler B, Spiss H, Beer R, et al. Treatment of staphylococcal ventriculitis associated with external cerebrospinal fluid drains: a prospective randomized trial of intravenous compared with intraventricular vancomycin therapy. J Neurosurg. 2003;98:1040–4.

    Article  CAS  PubMed  Google Scholar 

  130. Remes F, Tomas R, Jindrak V, Vanis V, Setlik M. Intraventricular and lumbar intrathecal administration of antibiotics in postneurosurgical patients with meningitis and/or ventriculitis in a serious clinical state. J Neurosurg. 2013;119:1596–602.

    Article  PubMed  Google Scholar 

  131. Stenager E, Gerner-Smidt P, Kock-Jensen C. Ventriculostomy-related infections–an epidemiological study. Acta Neurochir (Wien). 1986;83:20–3.

    Article  CAS  Google Scholar 

  132. Kitchen WJ, Singh N, Hulme S, Galea J, Patel HC, King AT. External ventricular drain infection: improved technique can reduce infection rates. Br J Neurosurg. 2011;25:632–5.

    Article  PubMed  Google Scholar 

  133. Williams TA, Leslie GD, Dobb GJ, Roberts B, van Heerden PV. Decrease in proven ventriculitis by reducing the frequency of cerebrospinal fluid sampling from extraventricular drains. J Neurosurg. 2011;115:1040–6.

    Article  PubMed  Google Scholar 

  134. Williamson RA, Phillips-Bute BG, McDonagh DL, et al. Predictors of extraventricular drain-associated bacterial ventriculitis. J Crit Care. 2014;29:77–82.

    Article  PubMed  Google Scholar 

  135. Abla AA, Zabramski JM, Jahnke HK, Fusco D, Nakaji P. Comparison of two antibiotic-impregnated ventricular catheters: a prospective sequential series trial. Neurosurgery. 2011;68:437–42; discussion 42.

    Article  PubMed  Google Scholar 

  136. Kubilay Z, Amini S, Fauerbach LL, Archibald L, Friedman WA, Layon AJ. Decreasing ventricular infections through the use of a ventriculostomy placement bundle: experience at a single institution. J Neurosurg. 2013;118:514–20.

    Article  PubMed  Google Scholar 

  137. Sloffer CA, Augspurger L, Wagenbach A, Lanzino G. Antimicrobial-impregnated external ventricular catheters: does the very low infection rate observed in clinical trials apply to daily clinical practice? Neurosurgery. 2005;56:1041–4; discussion -4.

    PubMed  Google Scholar 

  138. Holloway KL, Barnes T, Choi S, et al. Ventriculostomy infections: the effect of monitoring duration and catheter exchange in 584 patients. J Neurosurg. 1996;85:419–24.

    Article  CAS  PubMed  Google Scholar 

  139. Lo CH, Spelman D, Bailey M, Cooper DJ, Rosenfeld JV, Brecknell JE. External ventricular drain infections are independent of drain duration: an argument against elective revision. J Neurosurg. 2007;106:378–83.

    Article  PubMed  Google Scholar 

  140. Park P, Garton HJ, Kocan MJ, Thompson BG. Risk of infection with prolonged ventricular catheterization. Neurosurgery. 2004;55:594–9; discussion 9–601.

    Article  PubMed  Google Scholar 

  141. Wong GK, Poon WS, Wai S, Yu LM, Lyon D, Lam JM. Failure of regular external ventricular drain exchange to reduce cerebrospinal fluid infection: result of a randomised controlled trial. J Neurol Neurosurg Psychiatry. 2002;73:759–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  142. Klopfenstein JD, Kim LJ, Feiz-Erfan I, et al. Comparison of rapid and gradual weaning from external ventricular drainage in patients with aneurysmal subarachnoid hemorrhage: a prospective randomized trial. J Neurosurg. 2004;100:225–9.

    Article  PubMed  Google Scholar 

  143. Bookland MJ, Sukul V, Connolly PJ. Use of a cyanoacrylate skin adhesive to reduce external ventricular drain infection rates. J Neurosurg. 2014;121:189–94.

    Article  PubMed  Google Scholar 

  144. Winston KR, McBride LA, Dudekula A. Bandages, dressings, and cranial neurosurgery. J Neurosurg. 2007;106:450–4.

    PubMed  Google Scholar 

  145. Honda H, Jones JC, Craighead MC, Diringer MN, Dacey RG, Warren DK. Reducing the incidence of intraventricular catheter-related ventriculitis in the neurology-neurosurgical intensive care unit at a tertiary care center in St Louis, Missouri: an 8-year follow-up study. Infect Control Hosp Epidemiol. 2010;31:1078–81.

    Article  PubMed  Google Scholar 

  146. Duncan C, Laurie K, Lynch M. Reducing the frequency of external ventricular drainage set changes may reduce the incidence of clinically defined ventriculitis. Aust Crit Care. 2011;24:69.

    Google Scholar 

  147. Leverstein-van Hall MA, Hopmans TE, van der Sprenkel JW, et al. A bundle approach to reduce the incidence of external ventricular and lumbar drain-related infections. J Neurosurg. 2010;112:345–53.

    Article  PubMed  Google Scholar 

  148. American Association of Neuroscience Nurses. Care of the patient undergoing intracranial pressure monitoring/external ventricular drainage or lumbar drainage. In: Blissett P, editor. Clinical Practice Guidelines Series, American Association of Neuroscience Nurses. Chicago: American Association of Neuroscience Nurses; 2014. p. 8–12.

  149. O’Grady NP, Alexander M, Burns LA, et al. Guidelines for the prevention of intravascular catheter-related infections. Am J Infect Control. 2011;39:S1–34.

    Article  PubMed  Google Scholar 

  150. Bader MK, Littlejohns L, Palmer S. Ventriculostomy and intracranial pressure monitoring: in search of a 0% infection rate. Heart Lung. 1995;24:166–72.

    Article  CAS  PubMed  Google Scholar 

  151. Camacho EF, Boszczowski I, Freire MP, et al. Impact of an educational intervention implanted in a neurological intensive care unit on rates of infection related to external ventricular drains. PLoS One. 2013;8:e50708.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  152. Dasic D, Hanna SJ, Bojanic S, Kerr RS. External ventricular drain infection: the effect of a strict protocol on infection rates and a review of the literature. Br J Neurosurg. 2006;20:296–300.

    Article  CAS  PubMed  Google Scholar 

  153. Flint AC, Rao VA, Renda NC, Faigeles BS, Lasman TE, Sheridan W. A simple protocol to prevent external ventricular drain infections. Neurosurgery. 2013;72:993–9; discussion 9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Zoe Oliver for her invaluable assistance in editing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barnett R. Nathan.

Ethics declarations

Conflict of interest

The authors do not have any conflicts of interest to declare.

Additional information

The Neurocritical Care Society affirms the value of this consensus statement as an educational tool for clinicians.

Herbert I. Fried, Barnett R. Nathan, A. Shaun Rowe, and Joseph M. Zabramski are cochairs of Committee.

Herbert I. Fried, Barnett R. Nathan, A. Shaun Rowe, and Joseph M. Zabramski contributed equally.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 48 kb)

Supplementary material 2 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fried, H.I., Nathan, B.R., Rowe, A.S. et al. The Insertion and Management of External Ventricular Drains: An Evidence-Based Consensus Statement. Neurocrit Care 24, 61–81 (2016). https://doi.org/10.1007/s12028-015-0224-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-015-0224-8

Keywords

Navigation