Skip to main content
Log in

Continuous EEG Monitoring for Early Detection of Delayed Cerebral Ischemia in Subarachnoid Hemorrhage: A Pilot Study

  • Original Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Introduction

Early identification of delayed cerebral ischemia (DCI) in patients with aneurysmal subarachnoid hemorrhage (aSAH) is a major challenge. The aim of this study was to investigate whether quantitative EEG (qEEG) features can detect DCI prior to clinical or radiographic findings.

Methods

A prospective cohort study was performed in aSAH patients in whom continuous EEG (cEEG) was recorded. We studied 12 qEEG features. We compared the time point at which qEEG changed with the time point that clinical deterioration occurred or new ischemia was noted on CT scan.

Results

Twenty aSAH patients were included of whom 11 developed DCI. The alpha/delta ratio (ADR) was the most promising feature that showed a significant difference in change over time in the DCI group (median −62 % with IQR −87 to −39 %) compared to the control group (median +27 % with IQR −32 to +104 %, p = 0.013). Based on the ROC curve, a threshold was chosen for a combined measure of ADR and alpha variability (AUC: 91.7, 95 % CI 74.2–100). The median time that elapsed between change of qEEG and clinical DCI diagnosis was seven hours (IQR −11–25). Delay between qEEG and CT scan changes was 44 h (median, IQR 14–117).

Conclusion

In this study, ADR and alpha variability could detect DCI development before ischemic changes on CT scan was apparent and before clinical deterioration was noted. Implementation of cEEG in aSAH patients can probably improve early detection of DCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Suarez J, Tarr R, Selman W. Aneurysmal subarachnoid hemorrhage. N Engl J Med. 2006;354:387–96.

    Article  CAS  PubMed  Google Scholar 

  2. Koenig M. Management of delayed cerebral ischemia after subarachnoid hemorrhage. Continuum (Minneap Minn). 2012;18:579–97.

    Google Scholar 

  3. Dorsch N, King M. A review of cerebral vasospasm in aneurysmal subarachnoid haemorrhage. J Clin Neurosci. 1994;1:19–26.

    Article  CAS  PubMed  Google Scholar 

  4. Neil-Dwyer G, Lang D, Doshi B, Gerber C, Smith P. Delayed cerebral ischaemia: the pathological substrate. Acta Neurochir. 1994;131:137–45.

    Article  CAS  PubMed  Google Scholar 

  5. Rabinstein A, Weigand S, Atkinson J, Wijdicks E. Patterns of cerebral infarction in aneurysmal subarachnoid hemorrhage. Stroke. 2005;36:992–7.

    Article  PubMed  Google Scholar 

  6. Claassen J, Bernardini G, Kreiter K, et al. Effect of cisternal and ventricular blood on risk of delayed cerebral ischemia after subarachnoid hemorrhage: the Fisher scale revisited. Stroke. 2001;32:2012–20.

    Article  CAS  PubMed  Google Scholar 

  7. Murayama Y, Malisch T, Guglielmi G, et al. Incidence of cerebral vasospasm after endovascular treatment of acutely ruptured aneurysms: report on 69 cases. J Neurosurg. 1997;87:830–5.

    Article  CAS  PubMed  Google Scholar 

  8. Bederson J, Connolly E, Batjer H, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke. 2009;40:994–1025.

    Article  PubMed  Google Scholar 

  9. Finnigan S, Walsh M, Rose S, Chalk J. Quantitative EEG indices of sub-acute ischaemic stroke correlate with clinical outcomes. Clin Neurophysiol. 2007;118:2525–32.

    Article  PubMed  Google Scholar 

  10. Sharbrough F, Messick J, Sundt T. Correlation of continuous electroencephalograms with cerebral blood flow measurements during carotid endarterectomy. Stroke. 1973;4:674–83.

    Article  CAS  PubMed  Google Scholar 

  11. Sundt T, Sharbrough F, Anderson R, Michenfelder J. Cerebral blood flow measurements and electroencephalograms during carotid endarterectomy. J Neurosurg. 1974;107:887–97.

    Article  Google Scholar 

  12. Baron J-C. Perfusion thresholds in human cerebral ischemia : historical perspective and therapeutic implications. Cerebrovasc Dis. 2001;11:2–8.

    Article  PubMed  Google Scholar 

  13. Labar D, Fisch B, Pedley T, Fink M, Solomon R. Quantitative EEG monitoring for patients with subarachnoid hemorrhage. Electroencephalogr Clin Neurophysiol. 1991;78:325–32.

    Article  CAS  PubMed  Google Scholar 

  14. Vespa P, Nuwer M, Juhász C, et al. Early detection of vasospasm after acute subarachnoid hemorrhage using continuous EEG ICU monitoring. Electroencephalogr Clin Neurophysiol. 1997;103:607–15.

    Article  CAS  PubMed  Google Scholar 

  15. Claassen J, Hirsch L, Kreiter K, et al. Quantitative continuous EEG for detecting delayed cerebral ischemia in patients with poor-grade subarachnoid hemorrhage. Clin Neurophysiol. 2004;115:2699–710.

    Article  PubMed  Google Scholar 

  16. Rathakrishnan R, Gotman J, Dubeau F, Angle M. Using continuous electroencephalography in the management of delayed cerebral ischemia following subarachnoid hemorrhage. Neurocrit Care. 2011;14:152–61.

    Article  PubMed  Google Scholar 

  17. Gollwitzer S, Groemer T, Rampp S, et al. Early prediction of delayed cerebral ischemia in subarachnoid hemorrhage based on quantitative EEG : a prospective study in adults. Clin Neurophysiol. 2015;126:1514–23.

    Article  CAS  PubMed  Google Scholar 

  18. Drake C, Hunt W, Kassell N, Sano K, Pertuiset B, De Villiers J. A universal subarachnoid hemorrhage scale: report of a committee of the World Federation of Neurosurgical Societies. J Neurol Neurosurg Psychiatry. 1988;51:1457.

    PubMed  PubMed Central  Google Scholar 

  19. Fisher C, Kistler J, Davis J. Relation of cerebral vasospasm to subarachnoid hemorrhage visualized by computerized tomographic scanning. Neurosurgery. 1980;6:1–9.

    Article  CAS  PubMed  Google Scholar 

  20. Van Swieten JC, Koudstaal PJ, Visser MC, Schouten HJ, van Gijn J. Interobserver agreement for the assessment of handicap in stroke patients. Stroke. 1988;19:604–7.

    Article  PubMed  Google Scholar 

  21. Cloostermans M, de Vos C, van Putten M. A novel approach for computer assisted EEG monitoring in the adult ICU. Clin Neurophysiol. 2011;122:2100–9.

    Article  PubMed  Google Scholar 

  22. Van Putten M, Tavy D. Continuous quantitative EEG monitoring in hemispheric stroke patients using the brain symmetry index. Stroke. 2004;35:2489–92.

    Article  PubMed  Google Scholar 

  23. Claassen J, Hirsch L, Frontera J, et al. Prognostic significance of continuous EEG monitoring in patients with poor-grade subarachnoid hemorrhage. Neurocrit Care. 2006;4:103–12.

    Article  PubMed  Google Scholar 

  24. Claassen J, Taccone F, Horn P, Holtkamp M, Stocchetti N, Oddo M. Recommendations on the use of EEG monitoring in critically ill patients: consensus statement from the neurointensive care section of the ESICM. Intensiv Care Med. 2013;39:1337–51.

    Article  CAS  Google Scholar 

  25. Dankbaar J, Slooter A, Rinkel G, van der Schaaf I. Effect of different components of triple-H therapy on cerebral perfusion in patients with aneurysmal subarachnoid haemorrhage: a systematic review. Crit Care. 2010;14:R23.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gathier CS, van den Bergh WM, Slooter AJC, et al. HIMALAIA (Hypertension Induction in the Management of AneurysmaL subArachnoid haemorrhage with secondary IschaemiA): a randomized single-blind controlled trial of induced hypertension vs. no induced hypertension in the treatment of delayed cerebral ischem. Int J Stroke. 2014;9:375–80.

    Article  CAS  PubMed  Google Scholar 

  27. Hofmeijer J, van Putten M. Ischemic cerebral damage: an appraisal of synaptic failure. Stroke. 2012;43:607–15.

    Article  PubMed  Google Scholar 

  28. Leon-Carrion J, Martin-Rodriguez J, Damas-Lopez J, y Martin JB, Dominguez-Morales M. Delta-alpha ratio correlates with level of recovery after neurorehabilitation in patients with acquired brain injury. Clin Neurophysiol. 2009;120:1039–45.

    Article  PubMed  Google Scholar 

  29. Nuwer MR, Jordan SE, Ahn SS. Evaluation of stroke using EEG frequency analysis and topographic mapping. Neurology. 1987;37:11–53.

    Article  Google Scholar 

  30. Vespa P, Boscardin J, Hovda D, et al. Early and persistent impaired percent alpha variability on continuous electroencephalography monitoring as predictive of poor outcome after traumatic brain injury. J Neurosurg. 2002;97:84–92.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Rots.

Ethics declarations

Conflict of interest

Michel van Putten is co-founder of Clinical Science Systems. Marjolijn Rots, Astrid Hoedemaekers, and Janneke Horn declare that they have no conflict of interest.

Appendix: Used Equations

Appendix: Used Equations

$$ {\text{Delta}} = \frac{{\sum\limits_{f = 1}^{4} {S(f)} }}{{\sum\limits_{f = 1}^{30} {S(f)} }} $$
$$ {\text{Theta}} = \frac{{\sum\limits_{f = 4}^{8} {S(f)} }}{{\sum\limits_{f = 1}^{30} {S(f)} }} $$
$$ {\text{Alpha}} = \frac{{\sum\limits_{f = 8}^{12.5} {S(f)} }}{{\sum\limits_{f = 1}^{30} {S(f)} }} $$
$$ {\text{Beta}} = \frac{{\sum\limits_{f = 12.5}^{30} {S(f)} }}{{\sum\limits_{f = 1}^{30} {S(f)} }} $$
$$ {\text{ADR}} = \frac{\text{Alpha}}{\text{Delta}} $$
$$ {\text{ABDTR}} = \frac{{{\text{Alpha}} + {\text{Beta}}}}{{{\text{Delta}} + {\text{Theta}}}} $$
$$ \sum\limits_{i = 1}^{{\text{SEF}}75} {S({f_i}) = \sum\limits_{j = 1}^{30} {S({f_j}) \times 0.75}} $$
$$ \sum\limits_{i = 1}^{{\text{SEF}}90} {S({f_i}) = \sum\limits_{j = 1}^{30} {S({f_j}) \times 0.9}} $$
$$ {\text{Alpha}} - {\text{Var}} = \frac{{\sigma_{\text{alpha}} }}{\text{Alpha}}\quad {\text{with}}\quad \sigma_{\text{alpha}} = \sqrt {\frac{1}{n - 1}} \sum\limits_{i = 1}^{n} {({\text{Alpha}}_{i} - \overline{\text{Alpha}} )^{2} } $$

with n the number of available data points

$$ {\text{BSI}}_{\text{Slow}} = \frac{1}{M}\sum\limits_{i = 1}^{M} {\left| {\sum\limits_{j = 1}^{N} {\frac{{S_{{ij,{\text{left}}}} (f_{j} ) - S_{{ij,{\text{right}}}} (f_{j} )}}{{S_{{ij,{\text{left}}}} (f_{j} ) + S_{{ij,{\text{right}}}} (f_{j} )}}} } \right|} \quad {\text{with}}\quad 1 < f_{j} < 7 $$

with M the number of channel pairs and N the number of Fourier coefficients

$$ {\text{BSI}}_{\text{Slow}} = \frac{1}{M}\sum\limits_{i = 1}^{M} {\left| {\sum\limits_{j = 1}^{N} {\frac{{S_{{ij,{\text{lef}}t}} (f_{j} ) - S_{{ij,{\text{right}}}} (f_{j} )}}{{S_{{ij,{\text{lef}}t}} (f_{j} ) + S_{{ij,{\text{right}}}} (f_{j} )}}} } \right|} \quad {\text{with}}\quad 1 < f_{j} < 25 $$

with M the number of channel pairs and N the number of Fourier coefficients.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rots, M.L., van Putten, M.J.A.M., Hoedemaekers, C.W.E. et al. Continuous EEG Monitoring for Early Detection of Delayed Cerebral Ischemia in Subarachnoid Hemorrhage: A Pilot Study. Neurocrit Care 24, 207–216 (2016). https://doi.org/10.1007/s12028-015-0205-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-015-0205-y

Keywords

Navigation