Skip to main content

Advertisement

Log in

Induced and Sustained Hypernatremia for the Prevention and Treatment of Cerebral Edema Following Brain Injury

Neurocritical Care Aims and scope Submit manuscript

Abstract

Cerebral edema develops in response to and as a result of a variety of neurologic insults such as ischemic stroke, traumatic brain injury, and tumor. It deforms brain tissue, resulting in localized mass effect and increase in intracranial pressure (ICP) that are associated with a high rate of morbidity and mortality. When administered in bolus form, hyperosmolar agents such as mannitol and hypertonic saline have been shown to reduce total brain water content and decrease ICP, and are currently the mainstays of pharmacological treatment. However, surprisingly, little is known about the increasingly common clinical practice of inducing a state of sustained hypernatremia. Herein, we review the available studies employing sustained hyperosmolar therapy to induce hypernatremia for the prevention and/or treatment of cerebral edema. Insufficient evidence exists to recommend pharmacologic induction of hypernatremia as a treatment for cerebral edema. The strategy of vigilant avoidance of hyponatremia is currently a safer, potentially more efficacious paradigm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kahle KT, Staley KJ, Nahed BV, Gamba G, Hebert SC, Lifton RP, Mount DB. Roles of the cation–chloride cotransporters in neurological disease. Nat Clin Pract Neurol. 2008;4(9):490–503.

    Article  PubMed  CAS  Google Scholar 

  2. Simard JM, Kent TA, Chen M, Tarasov KV, Gerzanich V. Brain oedema in focal ischaemia: molecular pathophysiology and theoretical implications. Lancet Neurol. 2007;6(3):258–68.

    Article  PubMed  CAS  Google Scholar 

  3. Walcott BP, Kahle KT, Simard JM. Novel treatment targets for cerebral edema. Neurotherapeutics. 2012;9(1):65–72.

    Article  PubMed  Google Scholar 

  4. Unterberg A, Stover J, Kress B, Kiening K. Edema and brain trauma. Neuroscience. 2004;129(4):1019–27.

    Article  Google Scholar 

  5. Claassen J, Carhuapoma JR, Kreiter KT, Du EY, Connolly ES, Mayer SA. Global cerebral edema after subarachnoid hemorrhage frequency, predictors, and impact on outcome. Stroke. 2002;33(5):1225–32.

    Article  PubMed  Google Scholar 

  6. Petito C, Pulsinelli W, Jacobson G, Plum F. Edema and vascular permeability in cerebral ischemia: comparison between ischemic neuronal damage and infarction. J Neuropathol Exp Neurol. 1982;41(4):423.

    Article  PubMed  CAS  Google Scholar 

  7. Mokri B. The Monro–Kellie hypothesis. Neurology. 2001;56(12):1746–8.

    Article  PubMed  CAS  Google Scholar 

  8. Bounds JV, Wiebers DO, Whisnant JP, Okazaki H. Mechanisms and timing of deaths from cerebral infarction. Stroke. 1981;12(4):474–7.

    Article  PubMed  CAS  Google Scholar 

  9. Robertson SC, Lennarson P, Hasan DM, Traynelis VC. Clinical course and surgical management of massive cerebral infarction. Neurosurgery. 2004;55(1):55–61. discussion 61–52.

    Article  PubMed  Google Scholar 

  10. Muizelaar JP, Lutz HA III, Becker DP. Effect of mannitol on ICP and CBF and correlation with pressure autoregulation in severely head-injured patients. J Neurosurg. 1984;61(4):700–6.

    Article  PubMed  CAS  Google Scholar 

  11. Fisher B, Thomas D, Peterson B. Hypertonic saline lowers raised intracranial pressure in children after head trauma. J Neurosurg Anesthesiol. 1992;4(1):4–10.

    Article  PubMed  CAS  Google Scholar 

  12. Simard JM, Sahuquillo J, Sheth KN, Kahle KT, Walcott BP. Managing malignant cerebral infarction. Curr Treat Options Neurol. 2011;13(2):217–29.

    Article  PubMed  Google Scholar 

  13. Sakellaridis N, Pavlou E, Karatzas S, Chroni D, Vlachos K, Chatzopoulos K, Dimopoulou E, Kelesis C, Karaouli V. Comparison of mannitol and hypertonic saline in the treatment of severe brain injuries. J Neurosurg. 2011;114(2):545–8.

    Article  PubMed  CAS  Google Scholar 

  14. Suarez JI, Qureshi AI, Bhardwaj A, Williams MA, Schnitzer MS, Mirski M, Hanley DF, Ulatowski JA. Treatment of refractory intracranial hypertension with 23.4% saline. Crit Care Med. 1998;26(6):1118–22.

    Article  PubMed  CAS  Google Scholar 

  15. Rockswold GL, Solid CA, Paredes-Andrade E, Rockswold SB, Jancik JT, Quickel RR. Hypertonic saline and its effect on intracranial pressure, cerebral perfusion pressure, and brain tissue oxygen. Neurosurgery. 2009;65(6):1035–41. discussion 1041-1032.

    Article  PubMed  Google Scholar 

  16. Ogden AT, Mayer SA, Connolly ES Jr. Hyperosmolar agents in neurosurgical practice: the evolving role of hypertonic saline. Neurosurgery. 2005;57(2):207–15. discussion 207–215.

    Article  PubMed  Google Scholar 

  17. Chesnut RM, Gautille T, Blunt BA, Klauber MR, Marshall LF. Neurogenic hypotension in patients with severe head injuries. J Trauma. 1998;44(6):958–63. discussion 963-954.

    Article  PubMed  CAS  Google Scholar 

  18. Kaufmann AM, Cardoso ER. Aggravation of vasogenic cerebral edema by multiple-dose mannitol. J Neurosurg. 1992;77(4):584–9.

    Article  PubMed  CAS  Google Scholar 

  19. Ware ML, Nemani VM, Meeker M, Lee C, Morabito DJ, Manley GT. Effects of 23.4% sodium chloride solution in reducing intracranial pressure in patients with traumatic brain injury: a preliminary study. Neurosurgery. 2005;57(4):727–36. discussion 727–736.

    Article  PubMed  Google Scholar 

  20. Koenig MA, Bryan M, Lewin JL 3rd, Mirski MA, Geocadin RG, Stevens RD. Reversal of transtentorial herniation with hypertonic saline. Neurology. 2008;70(13):1023–9.

    Article  PubMed  CAS  Google Scholar 

  21. Kerwin AJ, Schinco MA, Tepas JJ 3rd, Renfro WH, Vitarbo EA, Muehlberger M. The use of 23.4% hypertonic saline for the management of elevated intracranial pressure in patients with severe traumatic brain injury: a pilot study. J Trauma. 2009;67(2):277–82.

    Article  PubMed  CAS  Google Scholar 

  22. Qureshi AI, Suarez JI. Use of hypertonic saline solutions in treatment of cerebral edema and intracranial hypertension. Crit Care Med. 2000;28(9):3301–13.

    Article  PubMed  CAS  Google Scholar 

  23. Kamel H, Navi BB, Nakagawa K, Hemphill JC 3rd, Ko NU. Hypertonic saline versus mannitol for the treatment of elevated intracranial pressure: a meta-analysis of randomized clinical trials. Crit Care Med. 2011;39(3):554.

    Article  PubMed  CAS  Google Scholar 

  24. Carpenter J, Weinstein S, Myseros J, Vezina G, Bell MJ. Inadvertent hyponatremia leading to acute cerebral edema and early evidence of herniation. Neurocrit Care. 2007;6(3):195–9.

    Article  PubMed  Google Scholar 

  25. Fisher LA, Ko N, Miss J, Tung PP, Kopelnik A, Banki NM, Gardner D, Smith WS, Lawton MT, Zaroff JG. Hypernatremia predicts adverse cardiovascular and neurological outcomes after SAH. Neurocrit Care. 2006;5(3):180–5.

    Article  PubMed  Google Scholar 

  26. Maggiore U, Picetti E, Antonucci E, Parenti E, Regolisti G, Mergoni M, Vezzani A, Cabassi A, Fiaccadori E. The relation between the incidence of hypernatremia and mortality in patients with severe traumatic brain injury. Crit Care. 2009;13(4):R110.

    Article  PubMed  Google Scholar 

  27. Bhardwaj A, Harukuni I, Murphy SJ, Alkayed NJ, Crain BJ, Koehler RC, Hurn PD, Traystman RJ. Hypertonic saline worsens infarct volume after transient focal ischemia in rats. Stroke. 2000;31(7):1694–701.

    Article  PubMed  CAS  Google Scholar 

  28. Harber ES, O’Sullivan MG, Jayo MJ, Carlson CS. Cerebral infarction in two cynomolgus macaques (Macaca fascicularis) with hypernatremia. Vet Pathol. 1996;33(4):431–4.

    Article  PubMed  CAS  Google Scholar 

  29. Kahle KT, Walcott BP, Simard JM. Continuous hyperosmolar therapy for traumatic brain injury-associated cerebral edema: As good as it gets, or an iatrogenic secondary insult? J Clin Neurosci. 2013;20(1):30–1.

    Article  PubMed  Google Scholar 

  30. McManus ML, Soriano SG. Rebound swelling of astroglial cells exposed to hypertonic mannitol. Anesthesiology. 1998;88(6):1586–91.

    Article  PubMed  CAS  Google Scholar 

  31. Qureshi AI, Suarez JI, Bhardwaj A, Mirski M, Schnitzer MS, Hanley DF, Ulatowski JA. Use of hypertonic (3%) saline/acetate infusion in the treatment of cerebral edema: effect on intracranial pressure and lateral displacement of the brain. Crit Care Med. 1998;26(3):440.

    Article  PubMed  CAS  Google Scholar 

  32. Khanna S, Davis D, Peterson B, Fisher B, Tung H, O’Quigley J, Deutsch R. Use of hypertonic saline in the treatment of severe refractory posttraumatic intracranial hypertension in pediatric traumatic brain injury. Crit Care Med. 2000;28(4):1144–51.

    Article  PubMed  CAS  Google Scholar 

  33. Peterson B, Khanna S, Fisher B, Marshall L. Prolonged hypernatremia controls elevated intracranial pressure in head-injured pediatric patients. Crit Care Med. 2000;28(4):1136.

    Article  PubMed  CAS  Google Scholar 

  34. Gotoh O, Asano T, Koide T, Takakura K. Ischemic brain edema following occlusion of the middle cerebral artery in the rat. I: the time courses of the brain water, sodium and potassium contents and blood-brain barrier permeability to 125I-albumin. Stroke. 1985;16(1):101–9.

    Article  PubMed  CAS  Google Scholar 

  35. Sankar T, Assina R, Karis JP, Theodore N, Preul MC. Neurosurgical implications of mannitol accumulation within a meningioma and its peritumoral region demonstrated by magnetic resonance spectroscopy: case report. J Neurosurg. 2008;108(5):1010–3.

    Article  PubMed  Google Scholar 

  36. Palma L, Bruni G, Fiaschi AI, Mariottini A. Passage of mannitol into the brain around gliomas: a potential cause of rebound phenomenon. A study on 21 patients. J Neurosurg Sci. 2006;50(3):63–6.

    PubMed  CAS  Google Scholar 

  37. Toung TJK, Hurn PD, Traystman RJ, Bhardwaj A. Global brain water increases after experimental focal cerebral ischemia: effect of hypertonic saline. Crit Care Med. 2002;30(3):644.

    Article  PubMed  Google Scholar 

  38. Toung TJK, Tyler B, Brem H, Traystman RJ, Hurn PD, Bhardwaj A. Hypertonic saline ameliorates cerebral edema associated with experimental brain tumor. J Neurosurg Anesthesiol. 2002;14(3):187.

    Article  PubMed  Google Scholar 

  39. Wagner I, Hauer EM, Staykov D, Volbers B, Dorfler A, Schwab S, Bardutzky J. Effects of continuous hypertonic saline infusion on perihemorrhagic edema evolution. Stroke. 2011;42(6):1540–5.

    Article  PubMed  Google Scholar 

  40. Hauer EM, Stark D, Staykov D, Steigleder T, Schwab S, Bardutzky J. Early continuous hypertonic saline infusion in patients with severe cerebrovascular disease. Crit Care Med. 2011;39(7):1766–72.

    Article  PubMed  CAS  Google Scholar 

  41. Froelich M, Ni Q, Wess C, Ougorets I, Hartl R. Continuous hypertonic saline therapy and the occurrence of complications in neurocritically ill patients. Crit Care Med. 2009;37(4):1433–41.

    Article  PubMed  CAS  Google Scholar 

  42. Aiyagari V, Deibert E, Diringer MN. Hypernatremia in the neurologic intensive care unit: how high is too high? J Crit Care. 2006;21(2):163–72.

    Article  PubMed  Google Scholar 

  43. Li M, Hu YH, Chen G: Hypernatremia severity and the risk of death after traumatic brain injury. Injury. 2012.

  44. Qureshi AI, Suri MFK, Sung GY, Straw RN, Yahia AM, Saad M, Guterman LR, Hopkins LN. Prognostic significance of hypernatremia and hyponatremia among patients with aneurysmal subarachnoid hemorrhage. Neurosurgery. 2002;50(4):749–55. discussion 755–6.

    Google Scholar 

  45. Lang F, Busch GL, Ritter M, Völkl H, Waldegger S, Gulbins E, Häussinger D. Functional significance of cell volume regulatory mechanisms. Physiol Rev. 1998;78(1):247–306.

    PubMed  CAS  Google Scholar 

  46. Strange K. Cellular volume homeostasis. Adv Physiol Educ. 2004;28(4):155–9.

    Article  PubMed  Google Scholar 

  47. Staley KJ, Proctor WR. Modulation of mammalian dendritic GABAA receptor function by the kinetics of Cl− and HCO3− transport. J Physiol. 1999;519(3):693–712.

    Article  PubMed  CAS  Google Scholar 

  48. O’Neill WC. Physiological significance of volume-regulatory transporters. Am J Physiol Cell Physiol. 1999;276(5):C995–1011.

    Google Scholar 

  49. Pedersen S, O’Donnell M, Anderson S, Cala P. Physiology and pathophysiology of Na +/H + exchange and Na + -K + -2Cl–cotransport in the heart, brain, and blood. Am J Physiol Regul Integr Comp Physiol. 2006;291(1):R1–25.

    Article  PubMed  CAS  Google Scholar 

  50. Adragna N, Fulvio MD, Lauf P. Regulation of K–Cl cotransport: from function to genes. J Membr Biol. 2004;201(3):109–37.

    Article  PubMed  CAS  Google Scholar 

  51. Flatman PW. Regulation of Na–K–2Cl cotransport by phosphorylation and protein–protein interactions. BBA-Biomembranes. 2002;1566(1–2):140–51.

    Article  PubMed  CAS  Google Scholar 

  52. Simard JM, Chen M, Tarasov KV, Bhatta S, Ivanova S, Melnitchenko L, Tsymbalyuk N, West GA, Gerzanich V. Newly expressed SUR1-regulated NCCa–ATP channel mediates cerebral edema after ischemic stroke. Nat Med. 2006;12(4):433–40.

    Article  PubMed  CAS  Google Scholar 

  53. Kahle KT, Simard JM, Staley KJ, Nahed BV, Jones PS, Sun D. Molecular mechanisms of ischemic cerebral edema: role of electroneutral ion transport. Physiology. 2009;24(4):257–65.

    Article  PubMed  CAS  Google Scholar 

  54. Chen H, Luo J, Kintner DB, Shull GE, Sun D. Na+ dependent chloride transporter (NKCC1)-null mice exhibit less gray and white matter damage after focal cerebral ischemia. J Cereb Blood Flow Metab. 2005;25(1):54–66.

    Article  PubMed  Google Scholar 

  55. Başkaya MK, Rao AM, Doğan A, Donaldson D, Dempsey RJ. The biphasic opening of the blood–brain barrier in the cortex and hippocampus after traumatic brain injury in rats. Neurosci Lett. 1997;226(1):33–6.

    Article  PubMed  Google Scholar 

  56. Beaumont A, Marmarou A, Hayasaki K, Barzo P, Fatouros P, Corwin F, Marmaroir C. The permissive nature of blood brain barrier (BBB) opening in edema formation following traumatic brain injury. Acta Neurochir. 2001;Suppl 76:125–9.

    Google Scholar 

  57. Lu KT, Cheng NC, Wu CY, Yang YL. NKCC1-mediated traumatic brain injury-induced brain edema and neuron death via Raf/MEK/MAPK cascade. Crit Care Med. 2008;36(3):917.

    Article  PubMed  CAS  Google Scholar 

  58. Manley GT, Fujimura M, Ma T, Noshita N, Filiz F, Bollen AW, Chan P, Verkman A. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med. 2000;6(2):159–63.

    Article  PubMed  CAS  Google Scholar 

  59. Yan Y, Dempsey RJ, Flemmer A, Forbush B, Sun D. Inhibition of Na+–K+–Cl− cotransporter during focal cerebral ischemia decreases edema and neuronal damage. Brain Res. 2003;961(1):22–31.

    Article  PubMed  CAS  Google Scholar 

  60. Kahle KT, Walcott BP, Staley KJ. Resolution of headache and papilledema in idiopathic intracranial hypertension associated with inhibition of Na+–K+–2Cl− cotransport. J Child Neurol. 2011;26(2):205–8.

    Article  PubMed  Google Scholar 

  61. Dzhala VI, Talos DM, Sdrulla DA, Brumback AC, Mathews GC, Benke TA, Delpire E, Jensen FE, Staley KJ. NKCC1 transporter facilitates seizures in the developing brain. Nat Med. 2005;11(11):1205–13.

    Article  PubMed  CAS  Google Scholar 

  62. Junger WG, Liu FC, Loomis WH, Hoyt DB. Hypertonic saline enhances cellular immune function. Circ Shock. 1994;42(4):190.

    PubMed  CAS  Google Scholar 

  63. Coimbra R, Junger WG, Hoyt DB, Liu FC, Loomis WH, Evers MF. Hypertonic saline resuscitation restores hemorrhage-induced immunosuppression by decreasing prostaglandin E2 and interleukin-4 production. J Surg Res. 1996;64(2):203–9.

    Article  PubMed  CAS  Google Scholar 

  64. Shi HP, Deitch EA, Xu DZ, Lu Q, Hauser CJ. Hypertonic saline improves intestinal mucosa barrier function and lung injury after trauma-hemorrhagic shock. Shock. 2002;17(6):496.

    Article  PubMed  Google Scholar 

  65. Hartl R, Medary MB, Ruge M, Arfors KE, Ghahremani F, Ghajar J. Hypertonic/hyperoncotic saline attenuates microcirculatory disturbances after traumatic brain injury. J Trauma. 1997;42(5S):41S.

    Article  Google Scholar 

  66. Coimbra R, Hoyt DB, Junger WG, Angle N, Wolf P, Loomis W, Evers MF. Hypertonic saline resuscitation decreases susceptibility to sepsis after hemorrhagic shock. J Trauma. 1997;42(4):602.

    Article  PubMed  CAS  Google Scholar 

  67. Rizoli SB, Rhind SG, Shek PN, Inaba K, Filips D, Tien H, Brenneman F, Rotstein O. The immunomodulatory effects of hypertonic saline resuscitation in patients sustaining traumatic hemorrhagic shock: a randomized, controlled, double-blinded trial. Ann Surg. 2006;243(1):47.

    Article  PubMed  Google Scholar 

  68. Angle N, Hoyt DB, Cabello-Passini R, Herdon-Remelius C, Loomis W, Junger WG. Hypertonic saline resuscitation reduces neutrophil margination by suppressing neutrophil L selectin expression. J Trauma. 1998;45(1):7.

    Article  PubMed  CAS  Google Scholar 

  69. Ciesla DJ, Moore EE, Musters RJ, Biffl WL. Hypertonic saline alteration of the PMN cytoskeleton: implications for signal transduction and the cytotoxic response. J Trauma. 2001;50(2):206.

    Article  PubMed  CAS  Google Scholar 

  70. Pascual JL, Khwaja KA, Chaudhury P, Christou NV. Hypertonic saline and the microcirculation. J Trauma. 2003;54(5):S133.

    PubMed  CAS  Google Scholar 

  71. Pascual JL, Ferri LE, Seely AJE, Campisi G, Chaudhury P, Giannias B, Evans DC, Razek T, Michel RP, Christou NV. Hypertonic saline resuscitation of hemorrhagic shock diminishes neutrophil rolling and adherence to endothelium and reduces in vivo vascular leakage. Ann Surg. 2002;236(5):634.

    Article  PubMed  Google Scholar 

  72. Victorino GP, Newton CR, Curran B. Effect of hypertonic saline on microvascular permeability in the activated endothelium1, 2. J Surg Res. 2003;112(1):79–83.

    Article  PubMed  CAS  Google Scholar 

  73. Munar F, Ferrer AN, de Nadal M, Poca MA, Pedraza S, Sahuquillo J, Garnacho A. Cerebral hemodynamic effects of 7.2% hypertonic saline in patients with head injury and raised intracranial pressure. J Neurotrauma. 2000;17(1):41–51.

    Article  PubMed  CAS  Google Scholar 

  74. Prough DS, Johnson JC, Stump DA, Stullken EH, Poole GV Jr, Howard G. Effects of hypertonic saline versus lactated Ringer’s solution on cerebral oxygen transport during resuscitation from hemorrhagic shock. J Neurosurg. 1986;64(4):627–32.

    Article  PubMed  CAS  Google Scholar 

  75. Chodobski A. Possible new mechanism underlying hypertonic saline therapy for cerebral edema. J Appl Physiol. 2006;100(5):1437–8.

    Article  PubMed  CAS  Google Scholar 

  76. Jin QH, Ueda Y, Ishizuka Y, Kunitake T, Kannan H. Cardiovascular changes induced by central hypertonic saline are accompanied by glutamate release in awake rats. Am J Physiol Regul Integr Comp Physiol. 2001;281(4):R1224–31.

    PubMed  CAS  Google Scholar 

  77. Lightman SL, Todd K, Everitt B. Role for lateral tegmental noradrenergic neurons in the vasopressin response to hypertonic saline. Neurosci Lett. 1983;42(1):55–9.

    Article  PubMed  CAS  Google Scholar 

  78. Human T, Onuoha A, Diringer M, Dhar R. Response to a bolus of conivaptan in patients with acute hyponatremia after brain injury. J Crit Care. 2012;27(6):745.

    Article  PubMed  Google Scholar 

  79. Murphy T, Dhar R, Diringer M. Conivaptan bolus dosing for the correction of hyponatremia in the neurointensive care unit. Neurocrit Care. 2009;11(1):14–9.

    Article  PubMed  CAS  Google Scholar 

  80. Agha A, Thornton E, O’Kelly P, Tormey W, Phillips J, Thompson CJ. Posterior pituitary dysfunction after traumatic brain injury. J Clin Endocrinol Metab. 2004;89(12):5987–92.

    Article  PubMed  CAS  Google Scholar 

  81. Schneider HJ, Kreitschmann-Andermahr I, Ghigo E, Stalla GK, Agha A. Hypothalamopituitary dysfunction following traumatic brain injury and aneurysmal subarachnoid hemorrhage: a systematic review. JAMA. 2007;298(12):1429–38.

    Article  PubMed  CAS  Google Scholar 

  82. Zafonte RD, Mann NR. Cerebral salt wasting syndrome in brain injury patients: a potential cause of hyponatremia. Arch Phys Med Rehabil. 1997;78(5):540–2.

    Article  PubMed  CAS  Google Scholar 

  83. Steele A, Gowrishankar M, Abrahamson S, Mazer CD, Feldman RD, Halperin ML. Postoperative hyponatremia despite near-isotonic saline infusion: a phenomenon of desalination. Ann Intern Med. 1997;126(1):20–5.

    Article  PubMed  CAS  Google Scholar 

  84. Graffe CC, Bech JN, Pedersen EB. Effect of high and low sodium intake on urinary aquaporin-2 excretion in healthy humans. Am J Physiol Renal Physiol. 2012;302(2):F264–75.

    Article  PubMed  CAS  Google Scholar 

  85. Ropper AH. Hyperosmolar therapy for raised intracranial pressure. N Engl J Med. 2012;367(8):746–52.

    Article  PubMed  CAS  Google Scholar 

  86. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345(19):1368–77.

    Article  PubMed  CAS  Google Scholar 

  87. Pearse R, Dawson D, Fawcett J, Rhodes A, Grounds RM, Bennett ED. Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial [ISRCTN38797445]. Crit Care. 2005;9(6):R687–93.

    Article  PubMed  Google Scholar 

  88. Gan TJ, Soppitt A, Maroof M, El-Moalem H, Robertson KM, Moretti E, Dwane P, Glass PSA. Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery. Anesthesiology. 2002;97(4):820.

    Article  PubMed  Google Scholar 

  89. Schöchl H, Nienaber U, Hofer G, Voelckel W, Jambor C, Scharbert G, Kozek-Langenecker S, Solomon C. Research goal-directed coagulation management of major trauma patients using thromboelastometry (ROTEM®)-guided administration of fibrinogen concentrate and prothrombin complex concentrate. Crit Care. 2010;14(2):R55.

    Article  PubMed  Google Scholar 

  90. Patel HC, Menon DK, Tebbs S, Hawker R, Hutchinson PJ, Kirkpatrick PJ. Specialist neurocritical care and outcome from head injury. Intensive Care Med. 2002;28(5):547–53.

    Article  PubMed  Google Scholar 

  91. Fakhry SM, Trask AL, Waller MA, Watts DD. Management of brain-injured patients by an evidence-based medicine protocol improves outcomes and decreases hospital charges. J Trauma. 2004;56(3):492.

    Article  PubMed  Google Scholar 

  92. Bratton SL, Chesnut RM, Ghajar J, McConnell Hammond FF, Harris OA, Hartl R, Manley GT, Nemecek A, Newell DW, Rosenthal G, et al. Guidelines for the management of severe traumatic brain injury. XIV. Hyperventilation. J Neurotrauma. 2007;24(Suppl 1):S87–90.

    PubMed  Google Scholar 

  93. Bratton SL, Chesnut RM, Ghajar J, McConnell Hammond FF, Harris OA, Hartl R, Manley GT, Nemecek A, Newell DW, Rosenthal G, et al. Guidelines for the management of severe traumatic brain injury. I. Blood pressure and oxygenation. J Neurotrauma. 2007;24(Suppl 1):S7–13.

    PubMed  Google Scholar 

  94. Bratton SL, Chesnut RM, Ghajar J, McConnell Hammond FF, Harris OA, Hartl R, Manley GT, Nemecek A, Newell DW, Rosenthal G, et al. Guidelines for the management of severe traumatic brain injury. IX. Cerebral perfusion thresholds. J Neurotrauma. 2007;24(Suppl 1):S59–64.

    PubMed  Google Scholar 

  95. Bratton SL, Chesnut RM, Ghajar J, McConnell Hammond FF, Harris OA, Hartl R, Manley GT, Nemecek A, Newell DW, Rosenthal G, et al. Guidelines for the management of severe traumatic brain injury. VIII. Intracranial pressure thresholds. J Neurotrauma. 2007;24(Suppl 1):S55–8.

    PubMed  Google Scholar 

  96. Rao KVR, Reddy PVB, Curtis KM, Norenberg MD. Aquaporin-4 expression in cultured astrocytes after fluid percussion injury. J Neurotrauma. 2011;28(3):371–81.

    Article  PubMed  Google Scholar 

  97. Simard JM, Kahle KT, Gerzanich V. Molecular mechanisms of microvascular failure in central nervous system injury–synergistic roles of NKCC1 and SUR1/TRPM4. J Neurosurg. 2010;113(3):622–9.

    Article  PubMed  CAS  Google Scholar 

  98. Ningaraj NS, Rao MK, Black KL. Adenosine 5′-triphosphate-sensitive potassium channel-mediated blood-brain tumor barrier permeability increase in a rat brain tumor model. Cancer Res. 2003;63(24):8899–911.

    PubMed  CAS  Google Scholar 

  99. Zhang H, Gu YT, Xue YX. Bradykinin-induced blood-brain tumor barrier permeability increase is mediated by adenosine 5′-triphosphate-sensitive potassium channel. Brain Res. 2007;1144:33–41.

    Article  PubMed  CAS  Google Scholar 

  100. Simard JM, Tsymbalyuk N, Tsymbalyuk O, Ivanova S, Yurovsky V, Gerzanich V. Glibenclamide is superior to decompressive craniectomy in a rat model of malignant stroke. Stroke. 2010;41(3):531–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Grants to JMS from the Department of Veterans Affairs (Baltimore), the National Institute of Neurological Disorders and Stroke (NINDS) (NS060801; NS061808), the National Heart, Lung and Blood Institute (HL082517), the Department of the Army (W81XWH 1010898) and the Christopher and Dana Reeve Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian P. Walcott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryu, J.H., Walcott, B.P., Kahle, K.T. et al. Induced and Sustained Hypernatremia for the Prevention and Treatment of Cerebral Edema Following Brain Injury. Neurocrit Care 19, 222–231 (2013). https://doi.org/10.1007/s12028-013-9824-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-013-9824-3

Keywords

Navigation